Resolver x (complex solution)
x=\frac{\left(\sqrt{6}-1\right)\left(\sqrt{2}+\sqrt{6}-4+2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}\right)}{10}\approx -0.019756066+1.424392972i
x=\frac{\left(\sqrt{6}-1\right)\left(-2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}+\sqrt{2}+\sqrt{6}-4\right)}{10}\approx -0.019756066-1.424392972i
Gráfico
Compartir
Copiado a portapapeis
3-x\sqrt{6}-x\sqrt{2}+x^{2}+x^{2}\sqrt{6}+2+4x+2=0
Combina -x^{2} e 2x^{2} para obter x^{2}.
3-x\sqrt{6}-x\sqrt{2}+x^{2}+x^{2}\sqrt{6}+4+4x=0
Suma 2 e 2 para obter 4.
7-x\sqrt{6}-x\sqrt{2}+x^{2}+x^{2}\sqrt{6}+4x=0
Suma 3 e 4 para obter 7.
7+\left(-\sqrt{6}-\sqrt{2}+4\right)x+\left(1+\sqrt{6}\right)x^{2}=0
Combina todos os termos que conteñan x.
\left(\sqrt{6}+1\right)x^{2}+\left(4-\sqrt{2}-\sqrt{6}\right)x+7=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(4-\sqrt{2}-\sqrt{6}\right)±\sqrt{\left(4-\sqrt{2}-\sqrt{6}\right)^{2}-4\left(\sqrt{6}+1\right)\times 7}}{2\left(\sqrt{6}+1\right)}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1+\sqrt{6}, b por -\sqrt{6}-\sqrt{2}+4 e c por 7 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(4-\sqrt{2}-\sqrt{6}\right)±\sqrt{4\sqrt{3}+24-8\sqrt{2}-8\sqrt{6}-4\left(\sqrt{6}+1\right)\times 7}}{2\left(\sqrt{6}+1\right)}
Eleva -\sqrt{6}-\sqrt{2}+4 ao cadrado.
x=\frac{-\left(4-\sqrt{2}-\sqrt{6}\right)±\sqrt{4\sqrt{3}+24-8\sqrt{2}-8\sqrt{6}+\left(-4\sqrt{6}-4\right)\times 7}}{2\left(\sqrt{6}+1\right)}
Multiplica -4 por 1+\sqrt{6}.
x=\frac{-\left(4-\sqrt{2}-\sqrt{6}\right)±\sqrt{4\sqrt{3}+24-8\sqrt{2}-8\sqrt{6}-28\sqrt{6}-28}}{2\left(\sqrt{6}+1\right)}
Multiplica -4-4\sqrt{6} por 7.
x=\frac{-\left(4-\sqrt{2}-\sqrt{6}\right)±\sqrt{4\sqrt{3}-8\sqrt{2}-36\sqrt{6}-4}}{2\left(\sqrt{6}+1\right)}
Suma 24-8\sqrt{6}+4\sqrt{3}-8\sqrt{2} a -28-28\sqrt{6}.
x=\frac{-\left(4-\sqrt{2}-\sqrt{6}\right)±2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}}{2\left(\sqrt{6}+1\right)}
Obtén a raíz cadrada de -4-36\sqrt{6}+4\sqrt{3}-8\sqrt{2}.
x=\frac{\sqrt{2}+\sqrt{6}-4±2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}}{2\sqrt{6}+2}
Multiplica 2 por 1+\sqrt{6}.
x=\frac{\sqrt{2}+\sqrt{6}-4+2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}}{2\sqrt{6}+2}
Agora resolve a ecuación x=\frac{\sqrt{2}+\sqrt{6}-4±2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}}{2\sqrt{6}+2} se ± é máis. Suma \sqrt{6}+\sqrt{2}-4 a 2i\sqrt{1+9\sqrt{6}-\sqrt{3}+2\sqrt{2}}.
x=\frac{\left(\sqrt{6}-1\right)\left(\sqrt{2}+\sqrt{6}-4+2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}\right)}{10}
Divide \sqrt{6}+\sqrt{2}-4+2i\sqrt{1+9\sqrt{6}-\sqrt{3}+2\sqrt{2}} entre 2+2\sqrt{6}.
x=\frac{-2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}+\sqrt{2}+\sqrt{6}-4}{2\sqrt{6}+2}
Agora resolve a ecuación x=\frac{\sqrt{2}+\sqrt{6}-4±2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}}{2\sqrt{6}+2} se ± é menos. Resta 2i\sqrt{1+9\sqrt{6}-\sqrt{3}+2\sqrt{2}} de \sqrt{6}+\sqrt{2}-4.
x=\frac{\left(\sqrt{6}-1\right)\left(-2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}+\sqrt{2}+\sqrt{6}-4\right)}{10}
Divide \sqrt{6}+\sqrt{2}-4-2i\sqrt{1+9\sqrt{6}-\sqrt{3}+2\sqrt{2}} entre 2+2\sqrt{6}.
x=\frac{\left(\sqrt{6}-1\right)\left(\sqrt{2}+\sqrt{6}-4+2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}\right)}{10} x=\frac{\left(\sqrt{6}-1\right)\left(-2i\sqrt{2\sqrt{2}+9\sqrt{6}+1-\sqrt{3}}+\sqrt{2}+\sqrt{6}-4\right)}{10}
A ecuación está resolta.
3-x\sqrt{6}-x\sqrt{2}+x^{2}+x^{2}\sqrt{6}+2+4x+2=0
Combina -x^{2} e 2x^{2} para obter x^{2}.
3-x\sqrt{6}-x\sqrt{2}+x^{2}+x^{2}\sqrt{6}+4+4x=0
Suma 2 e 2 para obter 4.
3-x\sqrt{6}-x\sqrt{2}+x^{2}+x^{2}\sqrt{6}+4x=-4
Resta 4 en ambos lados. Calquera valor restado de cero dá como resultado o valor negativo.
-x\sqrt{6}-x\sqrt{2}+x^{2}+x^{2}\sqrt{6}+4x=-4-3
Resta 3 en ambos lados.
-x\sqrt{6}-x\sqrt{2}+x^{2}+x^{2}\sqrt{6}+4x=-7
Resta 3 de -4 para obter -7.
\left(-\sqrt{6}-\sqrt{2}+4\right)x+\left(1+\sqrt{6}\right)x^{2}=-7
Combina todos os termos que conteñan x.
\left(\sqrt{6}+1\right)x^{2}+\left(4-\sqrt{2}-\sqrt{6}\right)x=-7
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
\frac{\left(\sqrt{6}+1\right)x^{2}+\left(4-\sqrt{2}-\sqrt{6}\right)x}{\sqrt{6}+1}=-\frac{7}{\sqrt{6}+1}
Divide ambos lados entre 1+\sqrt{6}.
x^{2}+\frac{4-\sqrt{2}-\sqrt{6}}{\sqrt{6}+1}x=-\frac{7}{\sqrt{6}+1}
A división entre 1+\sqrt{6} desfai a multiplicación por 1+\sqrt{6}.
x^{2}+\left(\frac{\sqrt{2}}{5}-\frac{2\sqrt{3}}{5}+\sqrt{6}-2\right)x=-\frac{7}{\sqrt{6}+1}
Divide -\sqrt{6}-\sqrt{2}+4 entre 1+\sqrt{6}.
x^{2}+\left(\frac{\sqrt{2}}{5}-\frac{2\sqrt{3}}{5}+\sqrt{6}-2\right)x=\frac{7-7\sqrt{6}}{5}
Divide -7 entre 1+\sqrt{6}.
x^{2}+\left(\frac{\sqrt{2}}{5}-\frac{2\sqrt{3}}{5}+\sqrt{6}-2\right)x+\left(\frac{\sqrt{2}}{10}+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}-1\right)^{2}=\frac{7-7\sqrt{6}}{5}+\left(\frac{\sqrt{2}}{10}+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}-1\right)^{2}
Divide -2+\sqrt{6}-\frac{2\sqrt{3}}{5}+\frac{\sqrt{2}}{5}, o coeficiente do termo x, entre 2 para obter -1+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}+\frac{\sqrt{2}}{10}. Despois, suma o cadrado de -1+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}+\frac{\sqrt{2}}{10} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+\left(\frac{\sqrt{2}}{5}-\frac{2\sqrt{3}}{5}+\sqrt{6}-2\right)x+\frac{3\sqrt{3}}{5}-\frac{4\sqrt{2}}{5}-\frac{26\sqrt{6}}{25}+\frac{66}{25}=\frac{7-7\sqrt{6}}{5}+\frac{3\sqrt{3}}{5}-\frac{4\sqrt{2}}{5}-\frac{26\sqrt{6}}{25}+\frac{66}{25}
Eleva -1+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}+\frac{\sqrt{2}}{10} ao cadrado.
x^{2}+\left(\frac{\sqrt{2}}{5}-\frac{2\sqrt{3}}{5}+\sqrt{6}-2\right)x+\frac{3\sqrt{3}}{5}-\frac{4\sqrt{2}}{5}-\frac{26\sqrt{6}}{25}+\frac{66}{25}=\frac{3\sqrt{3}}{5}-\frac{4\sqrt{2}}{5}-\frac{61\sqrt{6}}{25}+\frac{101}{25}
Suma \frac{-7\sqrt{6}+7}{5} a \frac{66}{25}-\frac{26\sqrt{6}}{25}+\frac{3\sqrt{3}}{5}-\frac{4\sqrt{2}}{5}.
\left(x+\frac{\sqrt{2}}{10}+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}-1\right)^{2}=\frac{3\sqrt{3}}{5}-\frac{4\sqrt{2}}{5}-\frac{61\sqrt{6}}{25}+\frac{101}{25}
Factoriza x^{2}+\left(\frac{\sqrt{2}}{5}-\frac{2\sqrt{3}}{5}+\sqrt{6}-2\right)x+\frac{3\sqrt{3}}{5}-\frac{4\sqrt{2}}{5}-\frac{26\sqrt{6}}{25}+\frac{66}{25}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{\sqrt{2}}{10}+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}-1\right)^{2}}=\sqrt{\frac{3\sqrt{3}}{5}-\frac{4\sqrt{2}}{5}-\frac{61\sqrt{6}}{25}+\frac{101}{25}}
Obtén a raíz cadrada de ambos lados da ecuación.
x+\frac{\sqrt{2}}{10}+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}-1=\frac{i\sqrt{-\left(15\sqrt{3}+101-20\sqrt{2}-61\sqrt{6}\right)}}{5} x+\frac{\sqrt{2}}{10}+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}-1=-\frac{i\sqrt{20\sqrt{2}+61\sqrt{6}-15\sqrt{3}-101}}{5}
Simplifica.
x=\frac{i\sqrt{20\sqrt{2}+61\sqrt{6}-15\sqrt{3}-101}}{5}+\frac{\sqrt{3}}{5}-\frac{\sqrt{2}}{10}-\frac{\sqrt{6}}{2}+1 x=-\frac{i\sqrt{20\sqrt{2}+61\sqrt{6}-15\sqrt{3}-101}}{5}+\frac{\sqrt{3}}{5}-\frac{\sqrt{2}}{10}-\frac{\sqrt{6}}{2}+1
Resta -1+\frac{\sqrt{6}}{2}-\frac{\sqrt{3}}{5}+\frac{\sqrt{2}}{10} en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}