Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

218\times 10^{-18}x=\frac{663\times 10^{-26}\times 3}{434\times 10^{-9}}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma -34 e 8 para obter -26.
218\times \frac{1}{1000000000000000000}x=\frac{663\times 10^{-26}\times 3}{434\times 10^{-9}}
Calcula 10 á potencia de -18 e obtén \frac{1}{1000000000000000000}.
\frac{109}{500000000000000000}x=\frac{663\times 10^{-26}\times 3}{434\times 10^{-9}}
Multiplica 218 e \frac{1}{1000000000000000000} para obter \frac{109}{500000000000000000}.
\frac{109}{500000000000000000}x=\frac{3\times 663}{434\times 10^{17}}
Para dividir potencias da mesma base, resta o expoñente do numerador ao expoñente do denominador.
\frac{109}{500000000000000000}x=\frac{1989}{434\times 10^{17}}
Multiplica 3 e 663 para obter 1989.
\frac{109}{500000000000000000}x=\frac{1989}{434\times 100000000000000000}
Calcula 10 á potencia de 17 e obtén 100000000000000000.
\frac{109}{500000000000000000}x=\frac{1989}{43400000000000000000}
Multiplica 434 e 100000000000000000 para obter 43400000000000000000.
x=\frac{1989}{43400000000000000000}\times \frac{500000000000000000}{109}
Multiplica ambos lados por \frac{500000000000000000}{109}, o recíproco de \frac{109}{500000000000000000}.
x=\frac{9945}{47306}
Multiplica \frac{1989}{43400000000000000000} e \frac{500000000000000000}{109} para obter \frac{9945}{47306}.