Saltar ao contido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

a+b=-1 ab=2\left(-6\right)=-12
Factoriza a expresión mediante agrupamento. Primeiro, a expresión ten que volver escribirse como 2x^{2}+ax+bx-6. Para atopar a e b, configura un sistema para resolver.
1,-12 2,-6 3,-4
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é negativo, o número negativo ten maior valor absoluto que o positivo. Pon na lista todos eses pares enteiros que dan produto -12.
1-12=-11 2-6=-4 3-4=-1
Calcular a suma para cada parella.
a=-4 b=3
A solución é a parella que fornece a suma -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Reescribe 2x^{2}-x-6 como \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
Factoriza 2x no primeiro e 3 no grupo segundo.
\left(x-2\right)\left(2x+3\right)
Factoriza o termo común x-2 mediante a propiedade distributiva.
2x^{2}-x-6=0
O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Multiplica -8 por -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Suma 1 a 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Obtén a raíz cadrada de 49.
x=\frac{1±7}{2\times 2}
O contrario de -1 é 1.
x=\frac{1±7}{4}
Multiplica 2 por 2.
x=\frac{8}{4}
Agora resolve a ecuación x=\frac{1±7}{4} se ± é máis. Suma 1 a 7.
x=2
Divide 8 entre 4.
x=-\frac{6}{4}
Agora resolve a ecuación x=\frac{1±7}{4} se ± é menos. Resta 7 de 1.
x=-\frac{3}{2}
Reduce a fracción \frac{-6}{4} a termos máis baixos extraendo e cancelando 2.
2x^{2}-x-6=2\left(x-2\right)\left(x-\left(-\frac{3}{2}\right)\right)
Factoriza a expresión orixinal usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitúe 2 por x_{1} e -\frac{3}{2} por x_{2}.
2x^{2}-x-6=2\left(x-2\right)\left(x+\frac{3}{2}\right)
Simplifica todas as expresións do formulario p-\left(-q\right) a p+q.
2x^{2}-x-6=2\left(x-2\right)\times \frac{2x+3}{2}
Suma \frac{3}{2} a x mediante a busca dun denominador común e a suma dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
2x^{2}-x-6=\left(x-2\right)\left(2x+3\right)
Descarta o máximo común divisor 2 en 2 e 2.