Resolver x
x = \frac{13}{2} = 6\frac{1}{2} = 6.5
x=0
Gráfico
Compartir
Copiado a portapapeis
x\left(2x-13\right)=0
Factoriza x.
x=0 x=\frac{13}{2}
Para atopar as solucións de ecuación, resolve x=0 e 2x-13=0.
2x^{2}-13x=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}}}{2\times 2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 2, b por -13 e c por 0 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±13}{2\times 2}
Obtén a raíz cadrada de \left(-13\right)^{2}.
x=\frac{13±13}{2\times 2}
O contrario de -13 é 13.
x=\frac{13±13}{4}
Multiplica 2 por 2.
x=\frac{26}{4}
Agora resolve a ecuación x=\frac{13±13}{4} se ± é máis. Suma 13 a 13.
x=\frac{13}{2}
Reduce a fracción \frac{26}{4} a termos máis baixos extraendo e cancelando 2.
x=\frac{0}{4}
Agora resolve a ecuación x=\frac{13±13}{4} se ± é menos. Resta 13 de 13.
x=0
Divide 0 entre 4.
x=\frac{13}{2} x=0
A ecuación está resolta.
2x^{2}-13x=0
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
\frac{2x^{2}-13x}{2}=\frac{0}{2}
Divide ambos lados entre 2.
x^{2}-\frac{13}{2}x=\frac{0}{2}
A división entre 2 desfai a multiplicación por 2.
x^{2}-\frac{13}{2}x=0
Divide 0 entre 2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, o coeficiente do termo x, entre 2 para obter -\frac{13}{4}. Despois, suma o cadrado de -\frac{13}{4} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{169}{16}
Eleva -\frac{13}{4} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
\left(x-\frac{13}{4}\right)^{2}=\frac{169}{16}
Factoriza x^{2}-\frac{13}{2}x+\frac{169}{16}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Obtén a raíz cadrada de ambos lados da ecuación.
x-\frac{13}{4}=\frac{13}{4} x-\frac{13}{4}=-\frac{13}{4}
Simplifica.
x=\frac{13}{2} x=0
Suma \frac{13}{4} en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}