Resolver x
x=-4
x=1
Gráfico
Compartir
Copiado a portapapeis
x^{2}+3x-4=0
Divide ambos lados entre 2.
a+b=3 ab=1\left(-4\right)=-4
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como x^{2}+ax+bx-4. Para atopar a e b, configura un sistema para resolver.
-1,4 -2,2
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é positivo, o número positivo ten maior valor absoluto que o negativo. Pon na lista todos eses pares enteiros que dan produto -4.
-1+4=3 -2+2=0
Calcular a suma para cada parella.
a=-1 b=4
A solución é a parella que fornece a suma 3.
\left(x^{2}-x\right)+\left(4x-4\right)
Reescribe x^{2}+3x-4 como \left(x^{2}-x\right)+\left(4x-4\right).
x\left(x-1\right)+4\left(x-1\right)
Factoriza x no primeiro e 4 no grupo segundo.
\left(x-1\right)\left(x+4\right)
Factoriza o termo común x-1 mediante a propiedade distributiva.
x=1 x=-4
Para atopar as solucións de ecuación, resolve x-1=0 e x+4=0.
2x^{2}+6x-8=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-6±\sqrt{6^{2}-4\times 2\left(-8\right)}}{2\times 2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 2, b por 6 e c por -8 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 2\left(-8\right)}}{2\times 2}
Eleva 6 ao cadrado.
x=\frac{-6±\sqrt{36-8\left(-8\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-6±\sqrt{36+64}}{2\times 2}
Multiplica -8 por -8.
x=\frac{-6±\sqrt{100}}{2\times 2}
Suma 36 a 64.
x=\frac{-6±10}{2\times 2}
Obtén a raíz cadrada de 100.
x=\frac{-6±10}{4}
Multiplica 2 por 2.
x=\frac{4}{4}
Agora resolve a ecuación x=\frac{-6±10}{4} se ± é máis. Suma -6 a 10.
x=1
Divide 4 entre 4.
x=-\frac{16}{4}
Agora resolve a ecuación x=\frac{-6±10}{4} se ± é menos. Resta 10 de -6.
x=-4
Divide -16 entre 4.
x=1 x=-4
A ecuación está resolta.
2x^{2}+6x-8=0
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
2x^{2}+6x-8-\left(-8\right)=-\left(-8\right)
Suma 8 en ambos lados da ecuación.
2x^{2}+6x=-\left(-8\right)
Se restas -8 a si mesmo, quédache 0.
2x^{2}+6x=8
Resta -8 de 0.
\frac{2x^{2}+6x}{2}=\frac{8}{2}
Divide ambos lados entre 2.
x^{2}+\frac{6}{2}x=\frac{8}{2}
A división entre 2 desfai a multiplicación por 2.
x^{2}+3x=\frac{8}{2}
Divide 6 entre 2.
x^{2}+3x=4
Divide 8 entre 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Divide 3, o coeficiente do termo x, entre 2 para obter \frac{3}{2}. Despois, suma o cadrado de \frac{3}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
Eleva \frac{3}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Suma 4 a \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Factoriza x^{2}+3x+\frac{9}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Simplifica.
x=1 x=-4
Resta \frac{3}{2} en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}