Saltar ao contido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

a+b=-17 ab=2\left(-30\right)=-60
Factoriza a expresión mediante agrupamento. Primeiro, a expresión ten que volver escribirse como 2x^{2}+ax+bx-30. Para atopar a e b, configura un sistema para resolver.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é negativo, o número negativo ten maior valor absoluto que o positivo. Pon na lista todos eses pares enteiros que dan produto -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calcular a suma para cada parella.
a=-20 b=3
A solución é a parella que fornece a suma -17.
\left(2x^{2}-20x\right)+\left(3x-30\right)
Reescribe 2x^{2}-17x-30 como \left(2x^{2}-20x\right)+\left(3x-30\right).
2x\left(x-10\right)+3\left(x-10\right)
Factoriza 2x no primeiro e 3 no grupo segundo.
\left(x-10\right)\left(2x+3\right)
Factoriza o termo común x-10 mediante a propiedade distributiva.
2x^{2}-17x-30=0
O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 2\left(-30\right)}}{2\times 2}
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 2\left(-30\right)}}{2\times 2}
Eleva -17 ao cadrado.
x=\frac{-\left(-17\right)±\sqrt{289-8\left(-30\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-\left(-17\right)±\sqrt{289+240}}{2\times 2}
Multiplica -8 por -30.
x=\frac{-\left(-17\right)±\sqrt{529}}{2\times 2}
Suma 289 a 240.
x=\frac{-\left(-17\right)±23}{2\times 2}
Obtén a raíz cadrada de 529.
x=\frac{17±23}{2\times 2}
O contrario de -17 é 17.
x=\frac{17±23}{4}
Multiplica 2 por 2.
x=\frac{40}{4}
Agora resolve a ecuación x=\frac{17±23}{4} se ± é máis. Suma 17 a 23.
x=10
Divide 40 entre 4.
x=-\frac{6}{4}
Agora resolve a ecuación x=\frac{17±23}{4} se ± é menos. Resta 23 de 17.
x=-\frac{3}{2}
Reduce a fracción \frac{-6}{4} a termos máis baixos extraendo e cancelando 2.
2x^{2}-17x-30=2\left(x-10\right)\left(x-\left(-\frac{3}{2}\right)\right)
Factoriza a expresión orixinal usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitúe 10 por x_{1} e -\frac{3}{2} por x_{2}.
2x^{2}-17x-30=2\left(x-10\right)\left(x+\frac{3}{2}\right)
Simplifica todas as expresións do formulario p-\left(-q\right) a p+q.
2x^{2}-17x-30=2\left(x-10\right)\times \frac{2x+3}{2}
Suma \frac{3}{2} a x mediante a busca dun denominador común e a suma dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
2x^{2}-17x-30=\left(x-10\right)\left(2x+3\right)
Descarta o máximo común divisor 2 en 2 e 2.