Saltar ao contido principal
Calcular
Tick mark Image

Problemas similares da busca web

Compartir

2\times \frac{\sqrt{1}}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Reescribe a raíz cadrada da división \sqrt{\frac{1}{27}} como a división de raíces cadradas \frac{\sqrt{1}}{\sqrt{27}}.
2\times \frac{1}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Calcular a raíz cadrada de 1 e obter 1.
2\times \frac{1}{3\sqrt{3}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Factoriza 27=3^{2}\times 3. Reescribe a raíz cadrada do produto \sqrt{3^{2}\times 3} como o produto de raíces cadradas \sqrt{3^{2}}\sqrt{3}. Obtén a raíz cadrada de 3^{2}.
2\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Racionaliza o denominador de \frac{1}{3\sqrt{3}} mediante a multiplicación do numerador e o denominador por \sqrt{3}.
2\times \frac{\sqrt{3}}{3\times 3}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
O cadrado de \sqrt{3} é 3.
2\times \frac{\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Multiplica 3 e 3 para obter 9.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Expresa 2\times \frac{\sqrt{3}}{9} como unha única fracción.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\times 3\sqrt{2}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Factoriza 18=3^{2}\times 2. Reescribe a raíz cadrada do produto \sqrt{3^{2}\times 2} como o produto de raíces cadradas \sqrt{3^{2}}\sqrt{2}. Obtén a raíz cadrada de 3^{2}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\sqrt{\frac{4}{3}}+4\sqrt{\frac{1}{2}}
Anula 3 e 3.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{\sqrt{4}}{\sqrt{3}}+4\sqrt{\frac{1}{2}}
Reescribe a raíz cadrada da división \sqrt{\frac{4}{3}} como a división de raíces cadradas \frac{\sqrt{4}}{\sqrt{3}}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2}{\sqrt{3}}+4\sqrt{\frac{1}{2}}
Calcular a raíz cadrada de 4 e obter 2.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+4\sqrt{\frac{1}{2}}
Racionaliza o denominador de \frac{2}{\sqrt{3}} mediante a multiplicación do numerador e o denominador por \sqrt{3}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\sqrt{\frac{1}{2}}
O cadrado de \sqrt{3} é 3.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{1}}{\sqrt{2}}
Reescribe a raíz cadrada da división \sqrt{\frac{1}{2}} como a división de raíces cadradas \frac{\sqrt{1}}{\sqrt{2}}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{1}{\sqrt{2}}
Calcular a raíz cadrada de 1 e obter 1.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Racionaliza o denominador de \frac{1}{\sqrt{2}} mediante a multiplicación do numerador e o denominador por \sqrt{2}.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+4\times \frac{\sqrt{2}}{2}
O cadrado de \sqrt{2} é 2.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}+2\sqrt{2}
Descarta o máximo común divisor 2 en 4 e 2.
\frac{2\sqrt{3}}{9}-\frac{2\sqrt{3}}{3}
Combina -2\sqrt{2} e 2\sqrt{2} para obter 0.
\frac{2\sqrt{3}}{9}-\frac{3\times 2\sqrt{3}}{9}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de 9 e 3 é 9. Multiplica \frac{2\sqrt{3}}{3} por \frac{3}{3}.
\frac{2\sqrt{3}-3\times 2\sqrt{3}}{9}
Dado que \frac{2\sqrt{3}}{9} e \frac{3\times 2\sqrt{3}}{9} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{2\sqrt{3}-6\sqrt{3}}{9}
Fai as multiplicacións en 2\sqrt{3}-3\times 2\sqrt{3}.
\frac{-4\sqrt{3}}{9}
Fai os cálculos en 2\sqrt{3}-6\sqrt{3}.