Saltar ao contido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

x\left(15x-47\right)
Factoriza x.
15x^{2}-47x=0
O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
x=\frac{-\left(-47\right)±\sqrt{\left(-47\right)^{2}}}{2\times 15}
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-47\right)±47}{2\times 15}
Obtén a raíz cadrada de \left(-47\right)^{2}.
x=\frac{47±47}{2\times 15}
O contrario de -47 é 47.
x=\frac{47±47}{30}
Multiplica 2 por 15.
x=\frac{94}{30}
Agora resolve a ecuación x=\frac{47±47}{30} se ± é máis. Suma 47 a 47.
x=\frac{47}{15}
Reduce a fracción \frac{94}{30} a termos máis baixos extraendo e cancelando 2.
x=\frac{0}{30}
Agora resolve a ecuación x=\frac{47±47}{30} se ± é menos. Resta 47 de 47.
x=0
Divide 0 entre 30.
15x^{2}-47x=15\left(x-\frac{47}{15}\right)x
Factoriza a expresión orixinal usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitúe \frac{47}{15} por x_{1} e 0 por x_{2}.
15x^{2}-47x=15\times \frac{15x-47}{15}x
Resta \frac{47}{15} de x mediante o cálculo dun denominador común e a resta dos numeradores. Despois, se é posible, reduce a fracción aos termos máis baixos.
15x^{2}-47x=\left(15x-47\right)x
Descarta o máximo común divisor 15 en 15 e 15.