Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. t
Tick mark Image

Problemas similares da busca web

Compartir

\frac{1}{1000000}\times 3^{-7}\times 625t^{-4}
Calcula 10 á potencia de -6 e obtén \frac{1}{1000000}.
\frac{1}{1000000}\times \frac{1}{2187}\times 625t^{-4}
Calcula 3 á potencia de -7 e obtén \frac{1}{2187}.
\frac{1}{2187000000}\times 625t^{-4}
Multiplica \frac{1}{1000000} e \frac{1}{2187} para obter \frac{1}{2187000000}.
\frac{1}{3499200}t^{-4}
Multiplica \frac{1}{2187000000} e 625 para obter \frac{1}{3499200}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{1000000}\times 3^{-7}\times 625t^{-4})
Calcula 10 á potencia de -6 e obtén \frac{1}{1000000}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{1000000}\times \frac{1}{2187}\times 625t^{-4})
Calcula 3 á potencia de -7 e obtén \frac{1}{2187}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{2187000000}\times 625t^{-4})
Multiplica \frac{1}{1000000} e \frac{1}{2187} para obter \frac{1}{2187000000}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{3499200}t^{-4})
Multiplica \frac{1}{2187000000} e 625 para obter \frac{1}{3499200}.
-4\times \frac{1}{3499200}t^{-4-1}
A derivada de ax^{n} é nax^{n-1}.
-\frac{1}{874800}t^{-4-1}
Multiplica -4 por \frac{1}{3499200}.
-\frac{1}{874800}t^{-5}
Resta 1 de -4.