Resolver x
x = \frac{\sqrt{21} + 1}{2} \approx 2.791287847
x=\frac{1-\sqrt{21}}{2}\approx -1.791287847
Gráfico
Compartir
Copiado a portapapeis
x-3-\left(x+2\right)+2x\left(x-1\right)-5=0
Usa a propiedade distributiva para multiplicar 1 por x-3.
x-3-x-2+2x\left(x-1\right)-5=0
Para calcular o oposto de x+2, calcula o oposto de cada termo.
-3-2+2x\left(x-1\right)-5=0
Combina x e -x para obter 0.
-5+2x\left(x-1\right)-5=0
Resta 2 de -3 para obter -5.
-5+2x^{2}-2x-5=0
Usa a propiedade distributiva para multiplicar 2x por x-1.
-10+2x^{2}-2x=0
Resta 5 de -5 para obter -10.
2x^{2}-2x-10=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 2, b por -2 e c por -10 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-10\right)}}{2\times 2}
Eleva -2 ao cadrado.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-10\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-\left(-2\right)±\sqrt{4+80}}{2\times 2}
Multiplica -8 por -10.
x=\frac{-\left(-2\right)±\sqrt{84}}{2\times 2}
Suma 4 a 80.
x=\frac{-\left(-2\right)±2\sqrt{21}}{2\times 2}
Obtén a raíz cadrada de 84.
x=\frac{2±2\sqrt{21}}{2\times 2}
O contrario de -2 é 2.
x=\frac{2±2\sqrt{21}}{4}
Multiplica 2 por 2.
x=\frac{2\sqrt{21}+2}{4}
Agora resolve a ecuación x=\frac{2±2\sqrt{21}}{4} se ± é máis. Suma 2 a 2\sqrt{21}.
x=\frac{\sqrt{21}+1}{2}
Divide 2+2\sqrt{21} entre 4.
x=\frac{2-2\sqrt{21}}{4}
Agora resolve a ecuación x=\frac{2±2\sqrt{21}}{4} se ± é menos. Resta 2\sqrt{21} de 2.
x=\frac{1-\sqrt{21}}{2}
Divide 2-2\sqrt{21} entre 4.
x=\frac{\sqrt{21}+1}{2} x=\frac{1-\sqrt{21}}{2}
A ecuación está resolta.
x-3-\left(x+2\right)+2x\left(x-1\right)-5=0
Usa a propiedade distributiva para multiplicar 1 por x-3.
x-3-x-2+2x\left(x-1\right)-5=0
Para calcular o oposto de x+2, calcula o oposto de cada termo.
-3-2+2x\left(x-1\right)-5=0
Combina x e -x para obter 0.
-5+2x\left(x-1\right)-5=0
Resta 2 de -3 para obter -5.
-5+2x^{2}-2x-5=0
Usa a propiedade distributiva para multiplicar 2x por x-1.
-10+2x^{2}-2x=0
Resta 5 de -5 para obter -10.
2x^{2}-2x=10
Engadir 10 en ambos lados. Calquera valor máis cero é igual ao valor.
\frac{2x^{2}-2x}{2}=\frac{10}{2}
Divide ambos lados entre 2.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{10}{2}
A división entre 2 desfai a multiplicación por 2.
x^{2}-x=\frac{10}{2}
Divide -2 entre 2.
x^{2}-x=5
Divide 10 entre 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=5+\left(-\frac{1}{2}\right)^{2}
Divide -1, o coeficiente do termo x, entre 2 para obter -\frac{1}{2}. Despois, suma o cadrado de -\frac{1}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-x+\frac{1}{4}=5+\frac{1}{4}
Eleva -\frac{1}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}-x+\frac{1}{4}=\frac{21}{4}
Suma 5 a \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{21}{4}
Factoriza x^{2}-x+\frac{1}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x-\frac{1}{2}=\frac{\sqrt{21}}{2} x-\frac{1}{2}=-\frac{\sqrt{21}}{2}
Simplifica.
x=\frac{\sqrt{21}+1}{2} x=\frac{1-\sqrt{21}}{2}
Suma \frac{1}{2} en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}