Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}}
Multiplica x e x para obter x^{2}.
-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Multiplica -667 e \frac{1}{100000000000} para obter -\frac{667}{100000000000}.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}}
Anula 3 no numerador e no denominador.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000}
Calcula 10 á potencia de 8 e obtén 100000000.
-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000}
Multiplica 5 e 100000000 para obter 500000000.
-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2}
Divide 6x^{2} entre 500000000 para obter \frac{3}{250000000}x^{2}.
-\frac{2001}{25000000000000000000}x^{2}
Multiplica -\frac{667}{100000000000} e \frac{3}{250000000} para obter -\frac{2001}{25000000000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}})
Multiplica x e x para obter x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Calcula 10 á potencia de -11 e obtén \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Multiplica -667 e \frac{1}{100000000000} para obter -\frac{667}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}})
Anula 3 no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000})
Calcula 10 á potencia de 8 e obtén 100000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000})
Multiplica 5 e 100000000 para obter 500000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2})
Divide 6x^{2} entre 500000000 para obter \frac{3}{250000000}x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2001}{25000000000000000000}x^{2})
Multiplica -\frac{667}{100000000000} e \frac{3}{250000000} para obter -\frac{2001}{25000000000000000000}.
2\left(-\frac{2001}{25000000000000000000}\right)x^{2-1}
A derivada de ax^{n} é nax^{n-1}.
-\frac{2001}{12500000000000000000}x^{2-1}
Multiplica 2 por -\frac{2001}{25000000000000000000}.
-\frac{2001}{12500000000000000000}x^{1}
Resta 1 de 2.
-\frac{2001}{12500000000000000000}x
Para calquera termo t, t^{1}=t.