Resolver x
x=-1
x=4
Gráfico
Compartir
Copiado a portapapeis
-x^{2}+4x-x=-4
Resta x en ambos lados.
-x^{2}+3x=-4
Combina 4x e -x para obter 3x.
-x^{2}+3x+4=0
Engadir 4 en ambos lados.
a+b=3 ab=-4=-4
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como -x^{2}+ax+bx+4. Para atopar a e b, configura un sistema para resolver.
-1,4 -2,2
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é positivo, o número positivo ten maior valor absoluto que o negativo. Pon na lista todos eses pares enteiros que dan produto -4.
-1+4=3 -2+2=0
Calcular a suma para cada parella.
a=4 b=-1
A solución é a parella que fornece a suma 3.
\left(-x^{2}+4x\right)+\left(-x+4\right)
Reescribe -x^{2}+3x+4 como \left(-x^{2}+4x\right)+\left(-x+4\right).
-x\left(x-4\right)-\left(x-4\right)
Factoriza -x no primeiro e -1 no grupo segundo.
\left(x-4\right)\left(-x-1\right)
Factoriza o termo común x-4 mediante a propiedade distributiva.
x=4 x=-1
Para atopar as solucións de ecuación, resolve x-4=0 e -x-1=0.
-x^{2}+4x-x=-4
Resta x en ambos lados.
-x^{2}+3x=-4
Combina 4x e -x para obter 3x.
-x^{2}+3x+4=0
Engadir 4 en ambos lados.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por -1, b por 3 e c por 4 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
Eleva 3 ao cadrado.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
Multiplica -4 por -1.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
Multiplica 4 por 4.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
Suma 9 a 16.
x=\frac{-3±5}{2\left(-1\right)}
Obtén a raíz cadrada de 25.
x=\frac{-3±5}{-2}
Multiplica 2 por -1.
x=\frac{2}{-2}
Agora resolve a ecuación x=\frac{-3±5}{-2} se ± é máis. Suma -3 a 5.
x=-1
Divide 2 entre -2.
x=-\frac{8}{-2}
Agora resolve a ecuación x=\frac{-3±5}{-2} se ± é menos. Resta 5 de -3.
x=4
Divide -8 entre -2.
x=-1 x=4
A ecuación está resolta.
-x^{2}+4x-x=-4
Resta x en ambos lados.
-x^{2}+3x=-4
Combina 4x e -x para obter 3x.
\frac{-x^{2}+3x}{-1}=-\frac{4}{-1}
Divide ambos lados entre -1.
x^{2}+\frac{3}{-1}x=-\frac{4}{-1}
A división entre -1 desfai a multiplicación por -1.
x^{2}-3x=-\frac{4}{-1}
Divide 3 entre -1.
x^{2}-3x=4
Divide -4 entre -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Divide -3, o coeficiente do termo x, entre 2 para obter -\frac{3}{2}. Despois, suma o cadrado de -\frac{3}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Eleva -\frac{3}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Suma 4 a \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Factoriza x^{2}-3x+\frac{9}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Simplifica.
x=4 x=-1
Suma \frac{3}{2} en ambos lados da ecuación.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}