Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

-xx+x\times 2=-1
A variable x non pode ser igual a 0 porque a división entre cero non está definida. Multiplica ambos lados da ecuación por x.
-x^{2}+x\times 2=-1
Multiplica x e x para obter x^{2}.
-x^{2}+x\times 2+1=0
Engadir 1 en ambos lados.
-x^{2}+2x+1=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)}}{2\left(-1\right)}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por -1, b por 2 e c por 1 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)}}{2\left(-1\right)}
Eleva 2 ao cadrado.
x=\frac{-2±\sqrt{4+4}}{2\left(-1\right)}
Multiplica -4 por -1.
x=\frac{-2±\sqrt{8}}{2\left(-1\right)}
Suma 4 a 4.
x=\frac{-2±2\sqrt{2}}{2\left(-1\right)}
Obtén a raíz cadrada de 8.
x=\frac{-2±2\sqrt{2}}{-2}
Multiplica 2 por -1.
x=\frac{2\sqrt{2}-2}{-2}
Agora resolve a ecuación x=\frac{-2±2\sqrt{2}}{-2} se ± é máis. Suma -2 a 2\sqrt{2}.
x=1-\sqrt{2}
Divide -2+2\sqrt{2} entre -2.
x=\frac{-2\sqrt{2}-2}{-2}
Agora resolve a ecuación x=\frac{-2±2\sqrt{2}}{-2} se ± é menos. Resta 2\sqrt{2} de -2.
x=\sqrt{2}+1
Divide -2-2\sqrt{2} entre -2.
x=1-\sqrt{2} x=\sqrt{2}+1
A ecuación está resolta.
-xx+x\times 2=-1
A variable x non pode ser igual a 0 porque a división entre cero non está definida. Multiplica ambos lados da ecuación por x.
-x^{2}+x\times 2=-1
Multiplica x e x para obter x^{2}.
-x^{2}+2x=-1
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{1}{-1}
Divide ambos lados entre -1.
x^{2}+\frac{2}{-1}x=-\frac{1}{-1}
A división entre -1 desfai a multiplicación por -1.
x^{2}-2x=-\frac{1}{-1}
Divide 2 entre -1.
x^{2}-2x=1
Divide -1 entre -1.
x^{2}-2x+1=1+1
Divide -2, o coeficiente do termo x, entre 2 para obter -1. Despois, suma o cadrado de -1 en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-2x+1=2
Suma 1 a 1.
\left(x-1\right)^{2}=2
Factoriza x^{2}-2x+1. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Obtén a raíz cadrada de ambos lados da ecuación.
x-1=\sqrt{2} x-1=-\sqrt{2}
Simplifica.
x=\sqrt{2}+1 x=1-\sqrt{2}
Suma 1 en ambos lados da ecuación.