Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

-6x=15^{2}\times 8.854\times 10^{-15}\left(80\times 10^{-3}+x\right)\times 20
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma -12 e -3 para obter -15.
-6x=225\times 8.854\times 10^{-15}\left(80\times 10^{-3}+x\right)\times 20
Calcula 15 á potencia de 2 e obtén 225.
-6x=1992.15\times 10^{-15}\left(80\times 10^{-3}+x\right)\times 20
Multiplica 225 e 8.854 para obter 1992.15.
-6x=1992.15\times \frac{1}{1000000000000000}\left(80\times 10^{-3}+x\right)\times 20
Calcula 10 á potencia de -15 e obtén \frac{1}{1000000000000000}.
-6x=\frac{39843}{20000000000000000}\left(80\times 10^{-3}+x\right)\times 20
Multiplica 1992.15 e \frac{1}{1000000000000000} para obter \frac{39843}{20000000000000000}.
-6x=\frac{39843}{20000000000000000}\left(80\times \frac{1}{1000}+x\right)\times 20
Calcula 10 á potencia de -3 e obtén \frac{1}{1000}.
-6x=\frac{39843}{20000000000000000}\left(\frac{2}{25}+x\right)\times 20
Multiplica 80 e \frac{1}{1000} para obter \frac{2}{25}.
-6x=\frac{39843}{1000000000000000}\left(\frac{2}{25}+x\right)
Multiplica \frac{39843}{20000000000000000} e 20 para obter \frac{39843}{1000000000000000}.
-6x=\frac{39843}{12500000000000000}+\frac{39843}{1000000000000000}x
Usa a propiedade distributiva para multiplicar \frac{39843}{1000000000000000} por \frac{2}{25}+x.
-6x-\frac{39843}{1000000000000000}x=\frac{39843}{12500000000000000}
Resta \frac{39843}{1000000000000000}x en ambos lados.
-\frac{6000000000039843}{1000000000000000}x=\frac{39843}{12500000000000000}
Combina -6x e -\frac{39843}{1000000000000000}x para obter -\frac{6000000000039843}{1000000000000000}x.
x=\frac{39843}{12500000000000000}\left(-\frac{1000000000000000}{6000000000039843}\right)
Multiplica ambos lados por -\frac{1000000000000000}{6000000000039843}, o recíproco de -\frac{6000000000039843}{1000000000000000}.
x=-\frac{26562}{50000000000332025}
Multiplica \frac{39843}{12500000000000000} e -\frac{1000000000000000}{6000000000039843} para obter -\frac{26562}{50000000000332025}.