Saltar ao contido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

3\left(-x^{2}-4x+12\right)
Factoriza 3.
a+b=-4 ab=-12=-12
Considera -x^{2}-4x+12. Factoriza a expresión mediante agrupamento. Primeiro, a expresión ten que volver escribirse como -x^{2}+ax+bx+12. Para atopar a e b, configura un sistema para resolver.
1,-12 2,-6 3,-4
Dado que ab é negativo, a e b teñen signos opostos. Dado que a+b é negativo, o número negativo ten maior valor absoluto que o positivo. Pon na lista todos eses pares enteiros que dan produto -12.
1-12=-11 2-6=-4 3-4=-1
Calcular a suma para cada parella.
a=2 b=-6
A solución é a parella que fornece a suma -4.
\left(-x^{2}+2x\right)+\left(-6x+12\right)
Reescribe -x^{2}-4x+12 como \left(-x^{2}+2x\right)+\left(-6x+12\right).
x\left(-x+2\right)+6\left(-x+2\right)
Factoriza x no primeiro e 6 no grupo segundo.
\left(-x+2\right)\left(x+6\right)
Factoriza o termo común -x+2 mediante a propiedade distributiva.
3\left(-x+2\right)\left(x+6\right)
Reescribe a expresión factorizada completa.
-3x^{2}-12x+36=0
O polinomio cadrático pode factorizarse coa transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), onde x_{1} e x_{2} son as solucións á ecuación cadrática ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 36}}{2\left(-3\right)}
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 36}}{2\left(-3\right)}
Eleva -12 ao cadrado.
x=\frac{-\left(-12\right)±\sqrt{144+12\times 36}}{2\left(-3\right)}
Multiplica -4 por -3.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2\left(-3\right)}
Multiplica 12 por 36.
x=\frac{-\left(-12\right)±\sqrt{576}}{2\left(-3\right)}
Suma 144 a 432.
x=\frac{-\left(-12\right)±24}{2\left(-3\right)}
Obtén a raíz cadrada de 576.
x=\frac{12±24}{2\left(-3\right)}
O contrario de -12 é 12.
x=\frac{12±24}{-6}
Multiplica 2 por -3.
x=\frac{36}{-6}
Agora resolve a ecuación x=\frac{12±24}{-6} se ± é máis. Suma 12 a 24.
x=-6
Divide 36 entre -6.
x=-\frac{12}{-6}
Agora resolve a ecuación x=\frac{12±24}{-6} se ± é menos. Resta 24 de 12.
x=2
Divide -12 entre -6.
-3x^{2}-12x+36=-3\left(x-\left(-6\right)\right)\left(x-2\right)
Factoriza a expresión orixinal usando ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitúe -6 por x_{1} e 2 por x_{2}.
-3x^{2}-12x+36=-3\left(x+6\right)\left(x-2\right)
Simplifica todas as expresións do formulario p-\left(-q\right) a p+q.