Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Compartir

-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Suma \frac{1}{3} e \frac{7}{9} para obter \frac{10}{9}.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Calcula \frac{10}{9} á potencia de 2 e obtén \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Resta \frac{1}{2} de 1 para obter \frac{1}{2}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Calcula \frac{1}{2} á potencia de 2 e obtén \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Calcula -2 á potencia de 3 e obtén -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Multiplica \frac{1}{4} e -8 para obter -2.
-\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Resta \frac{3}{2} de -2 para obter -\frac{7}{2}.
-\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Divide \frac{100}{81} entre -\frac{7}{2} mediante a multiplicación de \frac{100}{81} polo recíproco de -\frac{7}{2}.
-\left(-\frac{200}{567}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Multiplica \frac{100}{81} e -\frac{2}{7} para obter -\frac{200}{567}.
\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
O contrario de -\frac{200}{567} é \frac{200}{567}.
\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Calcula -\frac{1}{6} á potencia de 2 e obtén \frac{1}{36}.
\frac{737}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}
Resta \frac{1}{36} de \frac{200}{567} para obter \frac{737}{2268}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}
Resta \frac{1}{5} de \frac{1}{4} para obter \frac{1}{20}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}
Resta \frac{2}{5} de 1 para obter \frac{3}{5}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}
Calcula \frac{3}{5} á potencia de 2 e obtén \frac{9}{25}.
\frac{737}{2268}+\frac{1}{20}\times \frac{25}{9}
Divide \frac{1}{20} entre \frac{9}{25} mediante a multiplicación de \frac{1}{20} polo recíproco de \frac{9}{25}.
\frac{737}{2268}+\frac{5}{36}
Multiplica \frac{1}{20} e \frac{25}{9} para obter \frac{5}{36}.
\frac{263}{567}
Suma \frac{737}{2268} e \frac{5}{36} para obter \frac{263}{567}.