Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

x^{2}+x-6=24
Usa a propiedade distributiva para multiplicar x+3 por x-2 e combina os termos semellantes.
x^{2}+x-6-24=0
Resta 24 en ambos lados.
x^{2}+x-30=0
Resta 24 de -6 para obter -30.
x=\frac{-1±\sqrt{1^{2}-4\left(-30\right)}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por 1 e c por -30 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-30\right)}}{2}
Eleva 1 ao cadrado.
x=\frac{-1±\sqrt{1+120}}{2}
Multiplica -4 por -30.
x=\frac{-1±\sqrt{121}}{2}
Suma 1 a 120.
x=\frac{-1±11}{2}
Obtén a raíz cadrada de 121.
x=\frac{10}{2}
Agora resolve a ecuación x=\frac{-1±11}{2} se ± é máis. Suma -1 a 11.
x=5
Divide 10 entre 2.
x=-\frac{12}{2}
Agora resolve a ecuación x=\frac{-1±11}{2} se ± é menos. Resta 11 de -1.
x=-6
Divide -12 entre 2.
x=5 x=-6
A ecuación está resolta.
x^{2}+x-6=24
Usa a propiedade distributiva para multiplicar x+3 por x-2 e combina os termos semellantes.
x^{2}+x=24+6
Engadir 6 en ambos lados.
x^{2}+x=30
Suma 24 e 6 para obter 30.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Divide 1, o coeficiente do termo x, entre 2 para obter \frac{1}{2}. Despois, suma o cadrado de \frac{1}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}+x+\frac{1}{4}=30+\frac{1}{4}
Eleva \frac{1}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}+x+\frac{1}{4}=\frac{121}{4}
Suma 30 a \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{121}{4}
Factoriza x^{2}+x+\frac{1}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x+\frac{1}{2}=\frac{11}{2} x+\frac{1}{2}=-\frac{11}{2}
Simplifica.
x=5 x=-6
Resta \frac{1}{2} en ambos lados da ecuación.