Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

x^{2}+4x+4=9x
Usar teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+2\right)^{2}.
x^{2}+4x+4-9x=0
Resta 9x en ambos lados.
x^{2}-5x+4=0
Combina 4x e -9x para obter -5x.
a+b=-5 ab=4
Para resolver a ecuación, factoriza x^{2}-5x+4 usando fórmulas x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) . Para atopar a e b, configura un sistema para resolver.
-1,-4 -2,-2
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é negativo, a e b son os dous negativos. Pon na lista todos eses pares enteiros que dan produto 4.
-1-4=-5 -2-2=-4
Calcular a suma para cada parella.
a=-4 b=-1
A solución é a parella que fornece a suma -5.
\left(x-4\right)\left(x-1\right)
Reescribe a expresión factorizada \left(x+a\right)\left(x+b\right) usando os valores obtidos.
x=4 x=1
Para atopar as solucións de ecuación, resolve x-4=0 e x-1=0.
x^{2}+4x+4=9x
Usar teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+2\right)^{2}.
x^{2}+4x+4-9x=0
Resta 9x en ambos lados.
x^{2}-5x+4=0
Combina 4x e -9x para obter -5x.
a+b=-5 ab=1\times 4=4
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como x^{2}+ax+bx+4. Para atopar a e b, configura un sistema para resolver.
-1,-4 -2,-2
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é negativo, a e b son os dous negativos. Pon na lista todos eses pares enteiros que dan produto 4.
-1-4=-5 -2-2=-4
Calcular a suma para cada parella.
a=-4 b=-1
A solución é a parella que fornece a suma -5.
\left(x^{2}-4x\right)+\left(-x+4\right)
Reescribe x^{2}-5x+4 como \left(x^{2}-4x\right)+\left(-x+4\right).
x\left(x-4\right)-\left(x-4\right)
Factoriza x no primeiro e -1 no grupo segundo.
\left(x-4\right)\left(x-1\right)
Factoriza o termo común x-4 mediante a propiedade distributiva.
x=4 x=1
Para atopar as solucións de ecuación, resolve x-4=0 e x-1=0.
x^{2}+4x+4=9x
Usar teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+2\right)^{2}.
x^{2}+4x+4-9x=0
Resta 9x en ambos lados.
x^{2}-5x+4=0
Combina 4x e -9x para obter -5x.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por -5 e c por 4 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Eleva -5 ao cadrado.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Multiplica -4 por 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Suma 25 a -16.
x=\frac{-\left(-5\right)±3}{2}
Obtén a raíz cadrada de 9.
x=\frac{5±3}{2}
O contrario de -5 é 5.
x=\frac{8}{2}
Agora resolve a ecuación x=\frac{5±3}{2} se ± é máis. Suma 5 a 3.
x=4
Divide 8 entre 2.
x=\frac{2}{2}
Agora resolve a ecuación x=\frac{5±3}{2} se ± é menos. Resta 3 de 5.
x=1
Divide 2 entre 2.
x=4 x=1
A ecuación está resolta.
x^{2}+4x+4=9x
Usar teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+2\right)^{2}.
x^{2}+4x+4-9x=0
Resta 9x en ambos lados.
x^{2}-5x+4=0
Combina 4x e -9x para obter -5x.
x^{2}-5x=-4
Resta 4 en ambos lados. Calquera valor restado de cero dá como resultado o valor negativo.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Divide -5, o coeficiente do termo x, entre 2 para obter -\frac{5}{2}. Despois, suma o cadrado de -\frac{5}{2} en ambos lados da ecuación. Este paso converte o lado esquerdo da ecuación nun cadrado perfecto.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
Eleva -\frac{5}{2} ao cadrado mediante a elevación ao cadrado do numerador e do denominador da fracción.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Suma -4 a \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Factoriza x^{2}-5x+\frac{25}{4}. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Obtén a raíz cadrada de ambos lados da ecuación.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Simplifica.
x=4 x=1
Suma \frac{5}{2} en ambos lados da ecuación.