Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image

Problemas similares da busca web

Compartir

\left(a-2b\right)\left(a^{2}-b^{2}-2a\left(a-1\right)^{2}-2\left(-a^{3}-a\right)\right)+a\left(10ab-5a^{2}+b^{2}\right)
Considera \left(a+b\right)\left(a-b\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(a-2b\right)\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)-2\left(-a^{3}-a\right)\right)+a\left(10ab-5a^{2}+b^{2}\right)
Usar teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(a-1\right)^{2}.
\left(a-2b\right)\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)-2\left(-a^{3}\right)+2a\right)+a\left(10ab-5a^{2}+b^{2}\right)
Usa a propiedade distributiva para multiplicar -2 por -a^{3}-a.
\left(a-2b\right)\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)+2a^{3}+2a\right)+a\left(10ab-5a^{2}+b^{2}\right)
Multiplica -2 e -1 para obter 2.
a\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+a\left(10ab-5a^{2}+b^{2}\right)
Usa a propiedade distributiva para multiplicar a-2b por a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)+2a^{3}+2a.
a\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar a por 10ab-5a^{2}+b^{2}.
a\left(a^{2}-b^{2}-2a^{3}+4a^{2}-2a\right)+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar -2a por a^{2}-2a+1.
a\left(5a^{2}-b^{2}-2a^{3}-2a\right)+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina a^{2} e 4a^{2} para obter 5a^{2}.
5a^{3}-ab^{2}-2a^{4}-2a^{2}+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar a por 5a^{2}-b^{2}-2a^{3}-2a.
5a^{3}-ab^{2}-2a^{2}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina -2a^{4} e 2a^{4} para obter 0.
5a^{3}-ab^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina -2a^{2} e 2a^{2} para obter 0.
5a^{3}-ab^{2}-2b\left(a^{2}-b^{2}-2a^{3}+4a^{2}-2a\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar -2a por a^{2}-2a+1.
5a^{3}-ab^{2}-2b\left(5a^{2}-b^{2}-2a^{3}-2a\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina a^{2} e 4a^{2} para obter 5a^{2}.
5a^{3}-ab^{2}-10ba^{2}+2b^{3}+4ba^{3}+4ba-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar -2b por 5a^{2}-b^{2}-2a^{3}-2a.
5a^{3}-ab^{2}-10ba^{2}+2b^{3}+4ba-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina 4ba^{3} e -4ba^{3} para obter 0.
5a^{3}-ab^{2}-10ba^{2}+2b^{3}+10ba^{2}-5a^{3}+ab^{2}
Combina 4ba e -4ba para obter 0.
5a^{3}-ab^{2}+2b^{3}-5a^{3}+ab^{2}
Combina -10ba^{2} e 10ba^{2} para obter 0.
-ab^{2}+2b^{3}+ab^{2}
Combina 5a^{3} e -5a^{3} para obter 0.
2b^{3}
Combina -ab^{2} e ab^{2} para obter 0.
\left(a-2b\right)\left(a^{2}-b^{2}-2a\left(a-1\right)^{2}-2\left(-a^{3}-a\right)\right)+a\left(10ab-5a^{2}+b^{2}\right)
Considera \left(a+b\right)\left(a-b\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(a-2b\right)\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)-2\left(-a^{3}-a\right)\right)+a\left(10ab-5a^{2}+b^{2}\right)
Usar teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(a-1\right)^{2}.
\left(a-2b\right)\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)-2\left(-a^{3}\right)+2a\right)+a\left(10ab-5a^{2}+b^{2}\right)
Usa a propiedade distributiva para multiplicar -2 por -a^{3}-a.
\left(a-2b\right)\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)+2a^{3}+2a\right)+a\left(10ab-5a^{2}+b^{2}\right)
Multiplica -2 e -1 para obter 2.
a\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+a\left(10ab-5a^{2}+b^{2}\right)
Usa a propiedade distributiva para multiplicar a-2b por a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)+2a^{3}+2a.
a\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar a por 10ab-5a^{2}+b^{2}.
a\left(a^{2}-b^{2}-2a^{3}+4a^{2}-2a\right)+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar -2a por a^{2}-2a+1.
a\left(5a^{2}-b^{2}-2a^{3}-2a\right)+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina a^{2} e 4a^{2} para obter 5a^{2}.
5a^{3}-ab^{2}-2a^{4}-2a^{2}+2a^{4}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar a por 5a^{2}-b^{2}-2a^{3}-2a.
5a^{3}-ab^{2}-2a^{2}+2a^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina -2a^{4} e 2a^{4} para obter 0.
5a^{3}-ab^{2}-2b\left(a^{2}-b^{2}-2a\left(a^{2}-2a+1\right)\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina -2a^{2} e 2a^{2} para obter 0.
5a^{3}-ab^{2}-2b\left(a^{2}-b^{2}-2a^{3}+4a^{2}-2a\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar -2a por a^{2}-2a+1.
5a^{3}-ab^{2}-2b\left(5a^{2}-b^{2}-2a^{3}-2a\right)-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina a^{2} e 4a^{2} para obter 5a^{2}.
5a^{3}-ab^{2}-10ba^{2}+2b^{3}+4ba^{3}+4ba-4ba^{3}-4ba+10ba^{2}-5a^{3}+ab^{2}
Usa a propiedade distributiva para multiplicar -2b por 5a^{2}-b^{2}-2a^{3}-2a.
5a^{3}-ab^{2}-10ba^{2}+2b^{3}+4ba-4ba+10ba^{2}-5a^{3}+ab^{2}
Combina 4ba^{3} e -4ba^{3} para obter 0.
5a^{3}-ab^{2}-10ba^{2}+2b^{3}+10ba^{2}-5a^{3}+ab^{2}
Combina 4ba e -4ba para obter 0.
5a^{3}-ab^{2}+2b^{3}-5a^{3}+ab^{2}
Combina -10ba^{2} e 10ba^{2} para obter 0.
-ab^{2}+2b^{3}+ab^{2}
Combina 5a^{3} e -5a^{3} para obter 0.
2b^{3}
Combina -ab^{2} e ab^{2} para obter 0.