Calcular
10
Factorizar
2\times 5
Compartir
Copiado a portapapeis
a^{2}+8a+16-\left(3a+2\right)^{2}+2\left(2a+1\right)\left(2a-1\right)+4a
Usar teorema binomial \left(p+q\right)^{2}=p^{2}+2pq+q^{2} para expandir \left(a+4\right)^{2}.
a^{2}+8a+16-\left(9a^{2}+12a+4\right)+2\left(2a+1\right)\left(2a-1\right)+4a
Usar teorema binomial \left(p+q\right)^{2}=p^{2}+2pq+q^{2} para expandir \left(3a+2\right)^{2}.
a^{2}+8a+16-9a^{2}-12a-4+2\left(2a+1\right)\left(2a-1\right)+4a
Para calcular o oposto de 9a^{2}+12a+4, calcula o oposto de cada termo.
-8a^{2}+8a+16-12a-4+2\left(2a+1\right)\left(2a-1\right)+4a
Combina a^{2} e -9a^{2} para obter -8a^{2}.
-8a^{2}-4a+16-4+2\left(2a+1\right)\left(2a-1\right)+4a
Combina 8a e -12a para obter -4a.
-8a^{2}-4a+12+2\left(2a+1\right)\left(2a-1\right)+4a
Resta 4 de 16 para obter 12.
-8a^{2}-4a+12+\left(4a+2\right)\left(2a-1\right)+4a
Usa a propiedade distributiva para multiplicar 2 por 2a+1.
-8a^{2}-4a+12+8a^{2}-2+4a
Usa a propiedade distributiva para multiplicar 4a+2 por 2a-1 e combina os termos semellantes.
-4a+12-2+4a
Combina -8a^{2} e 8a^{2} para obter 0.
-4a+10+4a
Resta 2 de 12 para obter 10.
10
Combina -4a e 4a para obter 0.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}