Calcular
-2+\frac{2}{9x^{2}}
Expandir
-2+\frac{2}{9x^{2}}
Gráfico
Compartir
Copiado a portapapeis
\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 3x por \frac{3x}{3x}.
\left(\frac{3x\times 3x-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Dado que \frac{3x\times 3x}{3x} e \frac{1}{3x} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\left(\frac{9x^{2}-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Fai as multiplicacións en 3x\times 3x-1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Para elevar \frac{9x^{2}-1}{3x} a unha potencia, eleva o numerador e o denominador á potencia e despois divide.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(\frac{3x\times 3x}{3x}+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 3x por \frac{3x}{3x}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{3x\times 3x+1}{3x}\left(3x-\frac{1}{3x}\right)
Dado que \frac{3x\times 3x}{3x} e \frac{1}{3x} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(3x-\frac{1}{3x}\right)
Fai as multiplicacións en 3x\times 3x+1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 3x por \frac{3x}{3x}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{3x\times 3x-1}{3x}
Dado que \frac{3x\times 3x}{3x} e \frac{1}{3x} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{9x^{2}-1}{3x}
Fai as multiplicacións en 3x\times 3x-1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x\times 3x}
Multiplica \frac{9x^{2}+1}{3x} por \frac{9x^{2}-1}{3x} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x^{2}\times 3}
Multiplica x e x para obter x^{2}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Multiplica 3 e 3 para obter 9.
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Expande \left(3x\right)^{2}.
\frac{\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Dado que \frac{\left(9x^{2}-1\right)^{2}}{9x^{2}} e \frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1}{9x^{2}}
Fai as multiplicacións en \left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right).
\frac{-18x^{2}+2}{9x^{2}}
Combina como termos en 81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1.
\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 3x por \frac{3x}{3x}.
\left(\frac{3x\times 3x-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Dado que \frac{3x\times 3x}{3x} e \frac{1}{3x} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\left(\frac{9x^{2}-1}{3x}\right)^{2}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Fai as multiplicacións en 3x\times 3x-1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(3x+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Para elevar \frac{9x^{2}-1}{3x} a unha potencia, eleva o numerador e o denominador á potencia e despois divide.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\left(\frac{3x\times 3x}{3x}+\frac{1}{3x}\right)\left(3x-\frac{1}{3x}\right)
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 3x por \frac{3x}{3x}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{3x\times 3x+1}{3x}\left(3x-\frac{1}{3x}\right)
Dado que \frac{3x\times 3x}{3x} e \frac{1}{3x} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(3x-\frac{1}{3x}\right)
Fai as multiplicacións en 3x\times 3x+1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\left(\frac{3x\times 3x}{3x}-\frac{1}{3x}\right)
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica 3x por \frac{3x}{3x}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{3x\times 3x-1}{3x}
Dado que \frac{3x\times 3x}{3x} e \frac{1}{3x} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{9x^{2}+1}{3x}\times \frac{9x^{2}-1}{3x}
Fai as multiplicacións en 3x\times 3x-1.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x\times 3x}
Multiplica \frac{9x^{2}+1}{3x} por \frac{9x^{2}-1}{3x} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{3x^{2}\times 3}
Multiplica x e x para obter x^{2}.
\frac{\left(9x^{2}-1\right)^{2}}{\left(3x\right)^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Multiplica 3 e 3 para obter 9.
\frac{\left(9x^{2}-1\right)^{2}}{9x^{2}}-\frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Expande \left(3x\right)^{2}.
\frac{\left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}}
Dado que \frac{\left(9x^{2}-1\right)^{2}}{9x^{2}} e \frac{\left(9x^{2}+1\right)\left(9x^{2}-1\right)}{9x^{2}} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1}{9x^{2}}
Fai as multiplicacións en \left(9x^{2}-1\right)^{2}-\left(9x^{2}+1\right)\left(9x^{2}-1\right).
\frac{-18x^{2}+2}{9x^{2}}
Combina como termos en 81x^{4}-18x^{2}+1-81x^{4}+9x^{2}-9x^{2}+1.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}