Calcular
-\frac{b^{3}}{4}+2b^{2}
Expandir
-\frac{b^{3}}{4}+2b^{2}
Compartir
Copiado a portapapeis
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Usar teorema binomial \left(p+q\right)^{2}=p^{2}+2pq+q^{2} para expandir \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 2 e 2 para obter 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Expande \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 2 e 2 para obter 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Calcula -2 á potencia de 2 e obtén 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Multiplica 2 e 4 para obter 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Combina 4a^{4} e -8a^{4} para obter -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Expande \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Calcula \frac{1}{2} á potencia de 2 e obtén \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma 1 e 2 para obter 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Usar teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 2 e 2 para obter 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Multiplica -1 e \frac{1}{4} para obter -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Combina -4a^{4} e 4a^{4} para obter 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Combina 4a^{2}b e -4a^{2}b para obter 0.
2b^{2}-\frac{1}{4}b^{3}
Combina b^{2} e b^{2} para obter 2b^{2}.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Usar teorema binomial \left(p+q\right)^{2}=p^{2}+2pq+q^{2} para expandir \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 2 e 2 para obter 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Expande \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 2 e 2 para obter 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Calcula -2 á potencia de 2 e obtén 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Multiplica 2 e 4 para obter 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Combina 4a^{4} e -8a^{4} para obter -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Expande \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Calcula \frac{1}{2} á potencia de 2 e obtén \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma 1 e 2 para obter 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Usar teorema binomial \left(p-q\right)^{2}=p^{2}-2pq+q^{2} para expandir \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Para elevar unha potencia a outra potencia, multiplica os expoñentes. Multiplica 2 e 2 para obter 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Multiplica -1 e \frac{1}{4} para obter -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Combina -4a^{4} e 4a^{4} para obter 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Combina 4a^{2}b e -4a^{2}b para obter 0.
2b^{2}-\frac{1}{4}b^{3}
Combina b^{2} e b^{2} para obter 2b^{2}.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}