Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{\left(-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\frac{\left(\frac{17}{2}\right)^{4}}{\left(\frac{17}{2}\right)^{3}}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Para dividir potencias da mesma base, resta o expoñente do denominador do expoñente do numerador. Resta 1 de 3 para obter 2.
\frac{\left(-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Para dividir potencias da mesma base, resta o expoñente do denominador do expoñente do numerador. Resta 3 de 4 para obter 1.
\frac{\frac{1}{16}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Calcula -\frac{1}{4} á potencia de 2 e obtén \frac{1}{16}.
\frac{\frac{1}{16}+\left(\frac{3}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Resta \frac{1}{2} de 2 para obter \frac{3}{2}.
\frac{\frac{1}{16}+\frac{81}{16}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Calcula \frac{3}{2} á potencia de 4 e obtén \frac{81}{16}.
\frac{\frac{1}{16}+\frac{81}{16}\times \left(\frac{4}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Resta \frac{5}{9} de 1 para obter \frac{4}{9}.
\frac{\frac{1}{16}+\frac{81}{16}\times \frac{16}{81}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Calcula \frac{4}{9} á potencia de 2 e obtén \frac{16}{81}.
\frac{\frac{1}{16}+1}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Multiplica \frac{81}{16} e \frac{16}{81} para obter 1.
\frac{\frac{17}{16}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Suma \frac{1}{16} e 1 para obter \frac{17}{16}.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Calcula \frac{17}{2} á potencia de 1 e obtén \frac{17}{2}.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}\times 1-1+\frac{1}{4}}\times \frac{37}{2}
Calcula -1 á potencia de 2 e obtén 1.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}-1+\frac{1}{4}}\times \frac{37}{2}
Multiplica \frac{3}{2} e 1 para obter \frac{3}{2}.
\frac{\frac{17}{16}}{10-1+\frac{1}{4}}\times \frac{37}{2}
Suma \frac{17}{2} e \frac{3}{2} para obter 10.
\frac{\frac{17}{16}}{9+\frac{1}{4}}\times \frac{37}{2}
Resta 1 de 10 para obter 9.
\frac{\frac{17}{16}}{\frac{37}{4}}\times \frac{37}{2}
Suma 9 e \frac{1}{4} para obter \frac{37}{4}.
\frac{17}{16}\times \frac{4}{37}\times \frac{37}{2}
Divide \frac{17}{16} entre \frac{37}{4} mediante a multiplicación de \frac{17}{16} polo recíproco de \frac{37}{4}.
\frac{17}{148}\times \frac{37}{2}
Multiplica \frac{17}{16} e \frac{4}{37} para obter \frac{17}{148}.
\frac{17}{8}
Multiplica \frac{17}{148} e \frac{37}{2} para obter \frac{17}{8}.