Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

\frac{\frac{2x}{x^{2}}+\frac{3}{x^{2}}}{\frac{4}{x^{2}}-\frac{9}{x}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de x e x^{2} é x^{2}. Multiplica \frac{2}{x} por \frac{x}{x}.
\frac{\frac{2x+3}{x^{2}}}{\frac{4}{x^{2}}-\frac{9}{x}}
Dado que \frac{2x}{x^{2}} e \frac{3}{x^{2}} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\frac{2x+3}{x^{2}}}{\frac{4}{x^{2}}-\frac{9x}{x^{2}}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de x^{2} e x é x^{2}. Multiplica \frac{9}{x} por \frac{x}{x}.
\frac{\frac{2x+3}{x^{2}}}{\frac{4-9x}{x^{2}}}
Dado que \frac{4}{x^{2}} e \frac{9x}{x^{2}} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\left(2x+3\right)x^{2}}{x^{2}\left(4-9x\right)}
Divide \frac{2x+3}{x^{2}} entre \frac{4-9x}{x^{2}} mediante a multiplicación de \frac{2x+3}{x^{2}} polo recíproco de \frac{4-9x}{x^{2}}.
\frac{2x+3}{-9x+4}
Anula x^{2} no numerador e no denominador.
\frac{\frac{2x}{x^{2}}+\frac{3}{x^{2}}}{\frac{4}{x^{2}}-\frac{9}{x}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de x e x^{2} é x^{2}. Multiplica \frac{2}{x} por \frac{x}{x}.
\frac{\frac{2x+3}{x^{2}}}{\frac{4}{x^{2}}-\frac{9}{x}}
Dado que \frac{2x}{x^{2}} e \frac{3}{x^{2}} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{\frac{2x+3}{x^{2}}}{\frac{4}{x^{2}}-\frac{9x}{x^{2}}}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de x^{2} e x é x^{2}. Multiplica \frac{9}{x} por \frac{x}{x}.
\frac{\frac{2x+3}{x^{2}}}{\frac{4-9x}{x^{2}}}
Dado que \frac{4}{x^{2}} e \frac{9x}{x^{2}} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{\left(2x+3\right)x^{2}}{x^{2}\left(4-9x\right)}
Divide \frac{2x+3}{x^{2}} entre \frac{4-9x}{x^{2}} mediante a multiplicación de \frac{2x+3}{x^{2}} polo recíproco de \frac{4-9x}{x^{2}}.
\frac{2x+3}{-9x+4}
Anula x^{2} no numerador e no denominador.