Saltar ao contido principal
Resolver x
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

a+b=-6 ab=9
Para resolver a ecuación, factoriza x^{2}-6x+9 usando fórmulas x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) . Para atopar a e b, configura un sistema para resolver.
-1,-9 -3,-3
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é negativo, a e b son os dous negativos. Pon na lista todos eses pares enteiros que dan produto 9.
-1-9=-10 -3-3=-6
Calcular a suma para cada parella.
a=-3 b=-3
A solución é a parella que fornece a suma -6.
\left(x-3\right)\left(x-3\right)
Reescribe a expresión factorizada \left(x+a\right)\left(x+b\right) usando os valores obtidos.
\left(x-3\right)^{2}
Reescribe como cadrado de binomio.
x=3
Para atopar a solución de ecuación, resolve x-3=0.
a+b=-6 ab=1\times 9=9
Para resolver a ecuación, factoriza o lado esquerdo mediante agrupamento. Primeiro, lado esquerdo ten que volver escribirse como x^{2}+ax+bx+9. Para atopar a e b, configura un sistema para resolver.
-1,-9 -3,-3
Dado que ab é positivo, a e b teñen o mesmo signo. Dado que a+b é negativo, a e b son os dous negativos. Pon na lista todos eses pares enteiros que dan produto 9.
-1-9=-10 -3-3=-6
Calcular a suma para cada parella.
a=-3 b=-3
A solución é a parella que fornece a suma -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Reescribe x^{2}-6x+9 como \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Factoriza x no primeiro e -3 no grupo segundo.
\left(x-3\right)\left(x-3\right)
Factoriza o termo común x-3 mediante a propiedade distributiva.
\left(x-3\right)^{2}
Reescribe como cadrado de binomio.
x=3
Para atopar a solución de ecuación, resolve x-3=0.
x^{2}-6x+9=0
Todas as ecuacións na forma ax^{2}+bx+c=0 pódense resolver coa fórmula cadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula cadrática fornece dúas solucións, unha cando ± é suma e outra cando é resta.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Esta ecuación ten unha forma estándar: ax^{2}+bx+c=0. Substitúe a por 1, b por -6 e c por 9 na fórmula cadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Eleva -6 ao cadrado.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Multiplica -4 por 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Suma 36 a -36.
x=-\frac{-6}{2}
Obtén a raíz cadrada de 0.
x=\frac{6}{2}
O contrario de -6 é 6.
x=3
Divide 6 entre 2.
x^{2}-6x+9=0
As ecuacións cadráticas coma esta pódense resolver completando o cadrado. Para completar o cadrado, a ecuación debe estar na forma x^{2}+bx=c.
\left(x-3\right)^{2}=0
Factoriza x^{2}-6x+9. En xeral, cando x^{2}+bx+c é un cadrado perfecto, sempre se pode factorizar coma \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Obtén a raíz cadrada de ambos lados da ecuación.
x-3=0 x-3=0
Simplifica.
x=3 x=3
Suma 3 en ambos lados da ecuación.
x=3
A ecuación está resolta. As solucións son iguais.