Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\sqrt{\frac{\left(\frac{11}{4}\times \frac{8}{11}\right)^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Para dividir potencias da mesma base, resta o expoñente do denominador do expoñente do numerador. Resta 1 de 2 para obter 1.
\sqrt{\frac{2^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiplica \frac{11}{4} e \frac{8}{11} para obter 2.
\sqrt{\frac{4}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calcula 2 á potencia de 2 e obtén 4.
\sqrt{\frac{4}{\left(\frac{\frac{5}{12}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Resta \frac{3}{2} de \frac{23}{12} para obter \frac{5}{12}.
\sqrt{\frac{4}{\left(\frac{5}{12}\times \frac{4}{5}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Divide \frac{5}{12} entre \frac{5}{4} mediante a multiplicación de \frac{5}{12} polo recíproco de \frac{5}{4}.
\sqrt{\frac{4}{\left(\frac{1}{3}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiplica \frac{5}{12} e \frac{4}{5} para obter \frac{1}{3}.
\sqrt{\frac{4}{\frac{1}{9}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calcula \frac{1}{3} á potencia de 2 e obtén \frac{1}{9}.
\sqrt{4\times 9}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Divide 4 entre \frac{1}{9} mediante a multiplicación de 4 polo recíproco de \frac{1}{9}.
\sqrt{36}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiplica 4 e 9 para obter 36.
6-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calcular a raíz cadrada de 36 e obter 6.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calcula \frac{1}{2} á potencia de 1 e obtén \frac{1}{2}.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\times \frac{13}{12}}{\frac{8}{3}}}
Resta \frac{1}{6} de \frac{5}{4} para obter \frac{13}{12}.
6-\sqrt{10+\frac{\frac{1}{2}+1}{\frac{8}{3}}}
Multiplica \frac{12}{13} e \frac{13}{12} para obter 1.
6-\sqrt{10+\frac{\frac{3}{2}}{\frac{8}{3}}}
Suma \frac{1}{2} e 1 para obter \frac{3}{2}.
6-\sqrt{10+\frac{3}{2}\times \frac{3}{8}}
Divide \frac{3}{2} entre \frac{8}{3} mediante a multiplicación de \frac{3}{2} polo recíproco de \frac{8}{3}.
6-\sqrt{10+\frac{9}{16}}
Multiplica \frac{3}{2} e \frac{3}{8} para obter \frac{9}{16}.
6-\sqrt{\frac{169}{16}}
Suma 10 e \frac{9}{16} para obter \frac{169}{16}.
6-\frac{13}{4}
Reescribe a raíz cadrada da división \frac{169}{16} como a división de raíces cadradas \frac{\sqrt{169}}{\sqrt{16}}. Obtén a raíz cadrada do numerador e o denominador.
\frac{11}{4}
Resta \frac{13}{4} de 6 para obter \frac{11}{4}.