Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\sqrt{\frac{\frac{13}{6}-\left(\frac{\left(1+\frac{1}{3}\right)^{2}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Resta \frac{1}{2} de \frac{8}{3} para obter \frac{13}{6}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{\left(\frac{4}{3}\right)^{2}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Suma 1 e \frac{1}{3} para obter \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{\frac{16}{9}}{\frac{4}{3}}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Calcula \frac{4}{3} á potencia de 2 e obtén \frac{16}{9}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{16}{9}\times \frac{3}{4}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Divide \frac{16}{9} entre \frac{4}{3} mediante a multiplicación de \frac{16}{9} polo recíproco de \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\left(\frac{4}{3}+\frac{1}{5}\right)\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Multiplica \frac{16}{9} e \frac{3}{4} para obter \frac{4}{3}.
\sqrt{\frac{\frac{13}{6}-\frac{23}{15}\times \frac{5}{46}+2-\frac{1}{4}}{\frac{3}{5}}}
Suma \frac{4}{3} e \frac{1}{5} para obter \frac{23}{15}.
\sqrt{\frac{\frac{13}{6}-\frac{1}{6}+2-\frac{1}{4}}{\frac{3}{5}}}
Multiplica \frac{23}{15} e \frac{5}{46} para obter \frac{1}{6}.
\sqrt{\frac{2+2-\frac{1}{4}}{\frac{3}{5}}}
Resta \frac{1}{6} de \frac{13}{6} para obter 2.
\sqrt{\frac{4-\frac{1}{4}}{\frac{3}{5}}}
Suma 2 e 2 para obter 4.
\sqrt{\frac{\frac{15}{4}}{\frac{3}{5}}}
Resta \frac{1}{4} de 4 para obter \frac{15}{4}.
\sqrt{\frac{15}{4}\times \frac{5}{3}}
Divide \frac{15}{4} entre \frac{3}{5} mediante a multiplicación de \frac{15}{4} polo recíproco de \frac{3}{5}.
\sqrt{\frac{25}{4}}
Multiplica \frac{15}{4} e \frac{5}{3} para obter \frac{25}{4}.
\frac{5}{2}
Reescribe a raíz cadrada da división \frac{25}{4} como a división de raíces cadradas \frac{\sqrt{25}}{\sqrt{4}}. Obtén a raíz cadrada do numerador e o denominador.