Saltar ao contido principal
Resolver l
Tick mark Image

Problemas similares da busca web

Compartir

\left(2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)\right)l=2
A ecuación está en forma estándar.
\frac{\left(2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)\right)l}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}=\frac{2}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}
Divide ambos lados entre 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}).
l=\frac{2}{2Re(\frac{1}{n+1})Im(n)+2Im(\frac{1}{n+1})Re(n)}
A división entre 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}) desfai a multiplicación por 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}).
l=\frac{1}{Re(\frac{1}{n+1})Im(n)+Im(\frac{1}{n+1})Re(n)}
Divide 2 entre 2Re(n)Im(\left(n+1\right)^{-1})+2Im(n)Re(\left(n+1\right)^{-1}).