Resolver x, y
x=35
y=72
Gráfico
Compartir
Copiado a portapapeis
x+y=107,4x+2y=284
Para resolver un par de ecuacións mediante substitución, resolve primeiro unha das variables nunha das ecuacións. Despois, substitúe o resultado desa variable na outra ecuación.
x+y=107
Escolle unha das ecuacións e despexa a x mediante o illamento de x no lado esquerdo do signo igual.
x=-y+107
Resta y en ambos lados da ecuación.
4\left(-y+107\right)+2y=284
Substitúe x por -y+107 na outra ecuación, 4x+2y=284.
-4y+428+2y=284
Multiplica 4 por -y+107.
-2y+428=284
Suma -4y a 2y.
-2y=-144
Resta 428 en ambos lados da ecuación.
y=72
Divide ambos lados entre -2.
x=-72+107
Substitúe y por 72 en x=-y+107. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
x=35
Suma 107 a -72.
x=35,y=72
O sistema xa funciona correctamente.
x+y=107,4x+2y=284
Converte as ecuacións a forma estándar e logo usa matrices para resolver o sistema de ecuacións.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}107\\284\end{matrix}\right)
Escribe as ecuacións en forma matricial.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}107\\284\end{matrix}\right)
Multiplica a ecuación pola matriz inversa de \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}107\\284\end{matrix}\right)
O produto dunha matriz e o seu inverso é a matriz de identidade.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}107\\284\end{matrix}\right)
Multiplica as matrices no lado esquerdo do signo igual.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}107\\284\end{matrix}\right)
A matriz inversa da matriz 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) é \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), polo que a ecuación da matriz se pode escribir como un problema de multiplicación de matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}107\\284\end{matrix}\right)
Fai o cálculo.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-107+\frac{1}{2}\times 284\\2\times 107-\frac{1}{2}\times 284\end{matrix}\right)
Multiplica as matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\72\end{matrix}\right)
Fai o cálculo.
x=35,y=72
Extrae os elementos da matriz x e y.
x+y=107,4x+2y=284
Para resolver por eliminación, os coeficientes dunha das variables deben ser iguais en ambas ecuacións de xeito que a variable se anule cando unha ecuación se reste da outra.
4x+4y=4\times 107,4x+2y=284
Para que x e 4x sexan iguais, multiplica todos os termos a cada lado da primeira ecuación por 4 e todos os termos a cada lado da segunda por 1.
4x+4y=428,4x+2y=284
Simplifica.
4x-4x+4y-2y=428-284
Resta 4x+2y=284 de 4x+4y=428 mediante a resta de termos semellantes en ambos lados do signo igual.
4y-2y=428-284
Suma 4x a -4x. 4x e -4x anúlanse, polo que queda unha ecuación cunha única variable que se pode resolver.
2y=428-284
Suma 4y a -2y.
2y=144
Suma 428 a -284.
y=72
Divide ambos lados entre 2.
4x+2\times 72=284
Substitúe y por 72 en 4x+2y=284. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
4x+144=284
Multiplica 2 por 72.
4x=140
Resta 144 en ambos lados da ecuación.
x=35
Divide ambos lados entre 4.
x=35,y=72
O sistema xa funciona correctamente.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}