Saltar ao contido principal
Resolver x, y, z
Tick mark Image

Problemas similares da busca web

Compartir

x=-\frac{2}{5}y-\frac{3}{5}z+\frac{8}{5}
Despexa x en 5x+2y+3z=8.
7\left(-\frac{2}{5}y-\frac{3}{5}z+\frac{8}{5}\right)+8y+2z=1 9\left(-\frac{2}{5}y-\frac{3}{5}z+\frac{8}{5}\right)+4y+9z=7
Substitúe -\frac{2}{5}y-\frac{3}{5}z+\frac{8}{5} por x na segunda e na terceira ecuación.
y=-\frac{51}{26}+\frac{11}{26}z z=-\frac{37}{18}-\frac{1}{9}y
Despexa y e z respectivamente nestas ecuacións.
z=-\frac{37}{18}-\frac{1}{9}\left(-\frac{51}{26}+\frac{11}{26}z\right)
Substitúe y por -\frac{51}{26}+\frac{11}{26}z na ecuación z=-\frac{37}{18}-\frac{1}{9}y.
z=-\frac{86}{49}
Despexa z en z=-\frac{37}{18}-\frac{1}{9}\left(-\frac{51}{26}+\frac{11}{26}z\right).
y=-\frac{51}{26}+\frac{11}{26}\left(-\frac{86}{49}\right)
Substitúe z por -\frac{86}{49} na ecuación y=-\frac{51}{26}+\frac{11}{26}z.
y=-\frac{265}{98}
Calcular y tendo en conta que y=-\frac{51}{26}+\frac{11}{26}\left(-\frac{86}{49}\right).
x=-\frac{2}{5}\left(-\frac{265}{98}\right)-\frac{3}{5}\left(-\frac{86}{49}\right)+\frac{8}{5}
Substitúe -\frac{265}{98} por y e -\frac{86}{49} por z na ecuación x=-\frac{2}{5}y-\frac{3}{5}z+\frac{8}{5}.
x=\frac{183}{49}
Calcular x tendo en conta que x=-\frac{2}{5}\left(-\frac{265}{98}\right)-\frac{3}{5}\left(-\frac{86}{49}\right)+\frac{8}{5}.
x=\frac{183}{49} y=-\frac{265}{98} z=-\frac{86}{49}
O sistema xa funciona correctamente.