Resolver x, y
x = \frac{100}{23} = 4\frac{8}{23} \approx 4.347826087
y = \frac{213700}{23} = 9291\frac{7}{23} \approx 9291.304347826
Gráfico
Compartir
Copiado a portapapeis
\frac{77}{100}y+2137-y=0
Ten en conta a segunda ecuación. Resta y en ambos lados.
-\frac{23}{100}y+2137=0
Combina \frac{77}{100}y e -y para obter -\frac{23}{100}y.
-\frac{23}{100}y=-2137
Resta 2137 en ambos lados. Calquera valor restado de cero dá como resultado o valor negativo.
y=-2137\left(-\frac{100}{23}\right)
Multiplica ambos lados por -\frac{100}{23}, o recíproco de -\frac{23}{100}.
y=\frac{213700}{23}
Multiplica -2137 e -\frac{100}{23} para obter \frac{213700}{23}.
2137x=\frac{213700}{23}
Ten en conta a primeira ecuación. Insire os valores coñecidos das variables na ecuación.
x=\frac{\frac{213700}{23}}{2137}
Divide ambos lados entre 2137.
x=\frac{213700}{23\times 2137}
Expresa \frac{\frac{213700}{23}}{2137} como unha única fracción.
x=\frac{213700}{49151}
Multiplica 23 e 2137 para obter 49151.
x=\frac{100}{23}
Reduce a fracción \frac{213700}{49151} a termos máis baixos extraendo e cancelando 2137.
x=\frac{100}{23} y=\frac{213700}{23}
O sistema xa funciona correctamente.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}