Saltar ao contido principal
Resolver x, y
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

2x+y=36,x-y=5.25
Para resolver un par de ecuacións mediante substitución, resolve primeiro unha das variables nunha das ecuacións. Despois, substitúe o resultado desa variable na outra ecuación.
2x+y=36
Escolle unha das ecuacións e despexa a x mediante o illamento de x no lado esquerdo do signo igual.
2x=-y+36
Resta y en ambos lados da ecuación.
x=\frac{1}{2}\left(-y+36\right)
Divide ambos lados entre 2.
x=-\frac{1}{2}y+18
Multiplica \frac{1}{2} por -y+36.
-\frac{1}{2}y+18-y=5.25
Substitúe x por -\frac{y}{2}+18 na outra ecuación, x-y=5.25.
-\frac{3}{2}y+18=5.25
Suma -\frac{y}{2} a -y.
-\frac{3}{2}y=-12.75
Resta 18 en ambos lados da ecuación.
y=\frac{17}{2}
Divide ambos lados da ecuación entre -\frac{3}{2}, o que é igual a multiplicar ambos lados polo recíproco da fracción.
x=-\frac{1}{2}\times \frac{17}{2}+18
Substitúe y por \frac{17}{2} en x=-\frac{1}{2}y+18. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
x=-\frac{17}{4}+18
Multiplica -\frac{1}{2} por \frac{17}{2} mediante a multiplicación do numerador polo numerador e do denominador polo denominador. Despois, se é posible, reduce a fracción aos termos máis baixos.
x=\frac{55}{4}
Suma 18 a -\frac{17}{4}.
x=\frac{55}{4},y=\frac{17}{2}
O sistema xa funciona correctamente.
2x+y=36,x-y=5.25
Converte as ecuacións a forma estándar e logo usa matrices para resolver o sistema de ecuacións.
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36\\5.25\end{matrix}\right)
Escribe as ecuacións en forma matricial.
inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}36\\5.25\end{matrix}\right)
Multiplica a ecuación pola matriz inversa de \left(\begin{matrix}2&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}36\\5.25\end{matrix}\right)
O produto dunha matriz e o seu inverso é a matriz de identidade.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}36\\5.25\end{matrix}\right)
Multiplica as matrices no lado esquerdo do signo igual.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-1}&-\frac{1}{2\left(-1\right)-1}\\-\frac{1}{2\left(-1\right)-1}&\frac{2}{2\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}36\\5.25\end{matrix}\right)
A matriz inversa da matriz 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) é \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), polo que a ecuación da matriz se pode escribir como un problema de multiplicación de matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}36\\5.25\end{matrix}\right)
Fai o cálculo.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 36+\frac{1}{3}\times 5.25\\\frac{1}{3}\times 36-\frac{2}{3}\times 5.25\end{matrix}\right)
Multiplica as matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{55}{4}\\\frac{17}{2}\end{matrix}\right)
Fai o cálculo.
x=\frac{55}{4},y=\frac{17}{2}
Extrae os elementos da matriz x e y.
2x+y=36,x-y=5.25
Para resolver por eliminación, os coeficientes dunha das variables deben ser iguais en ambas ecuacións de xeito que a variable se anule cando unha ecuación se reste da outra.
2x+y=36,2x+2\left(-1\right)y=2\times 5.25
Para que 2x e x sexan iguais, multiplica todos os termos a cada lado da primeira ecuación por 1 e todos os termos a cada lado da segunda por 2.
2x+y=36,2x-2y=10.5
Simplifica.
2x-2x+y+2y=36-10.5
Resta 2x-2y=10.5 de 2x+y=36 mediante a resta de termos semellantes en ambos lados do signo igual.
y+2y=36-10.5
Suma 2x a -2x. 2x e -2x anúlanse, polo que queda unha ecuación cunha única variable que se pode resolver.
3y=36-10.5
Suma y a 2y.
3y=25.5
Suma 36 a -10.5.
y=\frac{17}{2}
Divide ambos lados entre 3.
x-\frac{17}{2}=5.25
Substitúe y por \frac{17}{2} en x-y=5.25. Dado que a ecuación resultante contén só unha variable, pódese despexar x directamente.
x=\frac{55}{4}
Suma \frac{17}{2} en ambos lados da ecuación.
x=\frac{55}{4},y=\frac{17}{2}
O sistema xa funciona correctamente.