\left. \begin{array} { l } { ( 1 + 4 + 3 ) - ( 8 + 2 ) + ( 11 + 6 ) : 17 = 151 } \\ { 18 \cdot 6 : 27 - [ 26 - ( 81 : 9 \cdot 2 : 3 + 3 \cdot 6 ) ] = [ 2 ] } \end{array} \right.
Verificar
falso
Compartir
Copiado a portapapeis
5+3-\left(8+2\right)+\frac{11+6}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Suma 1 e 4 para obter 5.
8-\left(8+2\right)+\frac{11+6}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Suma 5 e 3 para obter 8.
8-10+\frac{11+6}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Suma 8 e 2 para obter 10.
-2+\frac{11+6}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Resta 10 de 8 para obter -2.
-2+\frac{17}{17}=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Suma 11 e 6 para obter 17.
-2+1=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Divide 17 entre 17 para obter 1.
-1=151\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Suma -2 e 1 para obter -1.
\text{false}\text{ and }\frac{18\times 6}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Comparar -1 e 151.
\text{false}\text{ and }\frac{108}{27}-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Multiplica 18 e 6 para obter 108.
\text{false}\text{ and }4-\left(26-\left(\frac{\frac{81}{9}\times 2}{3}+3\times 6\right)\right)=2
Divide 108 entre 27 para obter 4.
\text{false}\text{ and }4-\left(26-\left(\frac{9\times 2}{3}+3\times 6\right)\right)=2
Divide 81 entre 9 para obter 9.
\text{false}\text{ and }4-\left(26-\left(\frac{18}{3}+3\times 6\right)\right)=2
Multiplica 9 e 2 para obter 18.
\text{false}\text{ and }4-\left(26-\left(6+3\times 6\right)\right)=2
Divide 18 entre 3 para obter 6.
\text{false}\text{ and }4-\left(26-\left(6+18\right)\right)=2
Multiplica 3 e 6 para obter 18.
\text{false}\text{ and }4-\left(26-24\right)=2
Suma 6 e 18 para obter 24.
\text{false}\text{ and }4-2=2
Resta 24 de 26 para obter 2.
\text{false}\text{ and }2=2
Resta 2 de 4 para obter 2.
\text{false}\text{ and }\text{true}
Comparar 2 e 2.
\text{false}
A conxunción de \text{false} e \text{true} é \text{false}.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}