Resolver x, y, z, a, b, c, d (complex solution)
x=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
n_{1}\in \mathrm{Z}
y=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
n_{1}\in \mathrm{Z}
z\in \cup n_{1},\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
n_{1}\in \mathrm{Z}
a\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
n_{1}\in \mathrm{Z}
b\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
a=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{ and }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\right)
n_{1}\in \mathrm{Z}
c\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
b=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{ and }a=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{ and }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\right)
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }a=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{, }z=\frac{1}{2}+i\ln(3)^{-1}\pi n_{1}\right)\right)\right)\right)\text{, }n_{1}\in \mathrm{Z}\text{, }d\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{, }c=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{ and }b=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{ and }a=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{ and }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }a=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{, }z=\frac{1}{2}+i\ln(3)^{-1}\pi n_{1}\right)\right)\right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }a=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{, }z=\frac{1}{2}+i\ln(3)^{-1}\pi n_{1}\right)\right)\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }b=\frac{\pi n_{1}i}{\ln(3)}+\frac{1}{2}\text{, }a=\frac{1}{2}+i\ln(3)^{-1}\pi n_{1}\text{ and }z=\frac{1}{2}+i\ln(3)^{-1}\pi n_{1}\right)\right)\right)\right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{1}{2}+i\ln(3)^{-1}\pi n_{1}\right)\right)\right)\right)\text{, }n_{1}\in \mathrm{Z}
Resolver x, y, z, a, b, c, d
d=\frac{1}{2}=0.5
Compartir
Copiado a portapapeis
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}