Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
Factoriza x^{2}+2x-1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica x por \frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Dado que \frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} e \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Fai as multiplicacións en x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Combina como termos en x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
Expande \left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
O cadrado de \sqrt{2} é 2.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
Suma -2 e 1 para obter -1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
Factoriza x^{2}+2x-1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. Multiplica x por \frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Dado que \frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} e \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Fai as multiplicacións en x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Combina como termos en x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
Expande \left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
O cadrado de \sqrt{2} é 2.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
Suma -2 e 1 para obter -1.