\left\{ \begin{array} { l } { y - 2 x = 4 } \\ { 2 x + 3 y = 28 } \end{array} \right\}
Resolver y, x
x=2
y=8
Gráfico
Compartir
Copiado a portapapeis
y-2x=4,3y+2x=28
Para resolver un par de ecuacións mediante substitución, resolve primeiro unha das variables nunha das ecuacións. Despois, substitúe o resultado desa variable na outra ecuación.
y-2x=4
Escolle unha das ecuacións e despexa a y mediante o illamento de y no lado esquerdo do signo igual.
y=2x+4
Suma 2x en ambos lados da ecuación.
3\left(2x+4\right)+2x=28
Substitúe y por 4+2x na outra ecuación, 3y+2x=28.
6x+12+2x=28
Multiplica 3 por 4+2x.
8x+12=28
Suma 6x a 2x.
8x=16
Resta 12 en ambos lados da ecuación.
x=2
Divide ambos lados entre 8.
y=2\times 2+4
Substitúe x por 2 en y=2x+4. Dado que a ecuación resultante contén só unha variable, pódese despexar y directamente.
y=4+4
Multiplica 2 por 2.
y=8
Suma 4 a 4.
y=8,x=2
O sistema xa funciona correctamente.
y-2x=4,3y+2x=28
Converte as ecuacións a forma estándar e logo usa matrices para resolver o sistema de ecuacións.
\left(\begin{matrix}1&-2\\3&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\28\end{matrix}\right)
Escribe as ecuacións en forma matricial.
inverse(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))\left(\begin{matrix}1&-2\\3&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))\left(\begin{matrix}4\\28\end{matrix}\right)
Multiplica a ecuación pola matriz inversa de \left(\begin{matrix}1&-2\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))\left(\begin{matrix}4\\28\end{matrix}\right)
O produto dunha matriz e o seu inverso é a matriz de identidade.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&2\end{matrix}\right))\left(\begin{matrix}4\\28\end{matrix}\right)
Multiplica as matrices no lado esquerdo do signo igual.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\times 3\right)}&-\frac{-2}{2-\left(-2\times 3\right)}\\-\frac{3}{2-\left(-2\times 3\right)}&\frac{1}{2-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}4\\28\end{matrix}\right)
A matriz inversa da matriz 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) é \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), polo que a ecuación da matriz se pode escribir como un problema de multiplicación de matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}4\\28\end{matrix}\right)
Fai o cálculo.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 4+\frac{1}{4}\times 28\\-\frac{3}{8}\times 4+\frac{1}{8}\times 28\end{matrix}\right)
Multiplica as matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
Fai o cálculo.
y=8,x=2
Extrae os elementos da matriz y e x.
y-2x=4,3y+2x=28
Para resolver por eliminación, os coeficientes dunha das variables deben ser iguais en ambas ecuacións de xeito que a variable se anule cando unha ecuación se reste da outra.
3y+3\left(-2\right)x=3\times 4,3y+2x=28
Para que y e 3y sexan iguais, multiplica todos os termos a cada lado da primeira ecuación por 3 e todos os termos a cada lado da segunda por 1.
3y-6x=12,3y+2x=28
Simplifica.
3y-3y-6x-2x=12-28
Resta 3y+2x=28 de 3y-6x=12 mediante a resta de termos semellantes en ambos lados do signo igual.
-6x-2x=12-28
Suma 3y a -3y. 3y e -3y anúlanse, polo que queda unha ecuación cunha única variable que se pode resolver.
-8x=12-28
Suma -6x a -2x.
-8x=-16
Suma 12 a -28.
x=2
Divide ambos lados entre -8.
3y+2\times 2=28
Substitúe x por 2 en 3y+2x=28. Dado que a ecuación resultante contén só unha variable, pódese despexar y directamente.
3y+4=28
Multiplica 2 por 2.
3y=24
Resta 4 en ambos lados da ecuación.
y=8
Divide ambos lados entre 3.
y=8,x=2
O sistema xa funciona correctamente.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}