\left\{ \begin{array} { l } { 2 x + 3 y - 2 z = 3 } \\ { 4 x + y - 5 z = 0 } \\ { x + 4 y + 2 z = 12 } \end{array} \right.
Resolver x, y, z
x = \frac{18}{5} = 3\frac{3}{5} = 3.6
y=\frac{3}{5}=0.6
z=3
Compartir
Copiado a portapapeis
4x+y-5z=0 2x+3y-2z=3 x+4y+2z=12
Cambia a orde das ecuacións.
y=-4x+5z
Despexa y en 4x+y-5z=0.
2x+3\left(-4x+5z\right)-2z=3 x+4\left(-4x+5z\right)+2z=12
Substitúe -4x+5z por y na segunda e na terceira ecuación.
x=\frac{13}{10}z-\frac{3}{10} z=\frac{6}{11}+\frac{15}{22}x
Despexa x e z respectivamente nestas ecuacións.
z=\frac{6}{11}+\frac{15}{22}\left(\frac{13}{10}z-\frac{3}{10}\right)
Substitúe x por \frac{13}{10}z-\frac{3}{10} na ecuación z=\frac{6}{11}+\frac{15}{22}x.
z=3
Despexa z en z=\frac{6}{11}+\frac{15}{22}\left(\frac{13}{10}z-\frac{3}{10}\right).
x=\frac{13}{10}\times 3-\frac{3}{10}
Substitúe z por 3 na ecuación x=\frac{13}{10}z-\frac{3}{10}.
x=\frac{18}{5}
Calcular x tendo en conta que x=\frac{13}{10}\times 3-\frac{3}{10}.
y=-4\times \frac{18}{5}+5\times 3
Substitúe \frac{18}{5} por x e 3 por z na ecuación y=-4x+5z.
y=\frac{3}{5}
Calcular y tendo en conta que y=-4\times \frac{18}{5}+5\times 3.
x=\frac{18}{5} y=\frac{3}{5} z=3
O sistema xa funciona correctamente.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}