Saltar ao contido principal
Calcular
Tick mark Image

Problemas similares da busca web

Compartir

\int 2x+2-1-2x^{2}-2x^{2}+x\mathrm{d}x
Calcula a integral indefinida primeiro.
\int 2x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int x\mathrm{d}x
Integrar o termo da suma por termo.
2\int x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Factorizar a constante en cada termo.
x^{2}+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica 2 por \frac{x^{2}}{2}.
x^{2}+2x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Descubre a integral de 2 empregando a táboa de integrais comúns regra \int a\mathrm{d}x=ax.
x^{2}+2x-x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Descubre a integral de -1 empregando a táboa de integrais comúns regra \int a\mathrm{d}x=ax.
x^{2}+2x-x-\frac{2x^{3}}{3}-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica -2 por \frac{x^{3}}{3}.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica -2 por \frac{x^{3}}{3}.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\frac{x^{2}}{2}
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x\mathrm{d}x por \frac{x^{2}}{2}.
\frac{3x^{2}}{2}+x-\frac{4x^{3}}{3}
Simplifica.
\frac{3}{2}\times 1^{2}+1-\frac{4}{3}\times 1^{3}-\left(\frac{3}{2}\times 0^{2}+0-\frac{4}{3}\times 0^{3}\right)
A integral definida é a primitiva da expresión calculada no límite superior de integración menos a primitiva calculada no límite inferior de integración.
\frac{7}{6}
Simplifica.