Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares da busca web

Compartir

\int x\left(x^{3}+15x^{2}+75x+125\right)\mathrm{d}x
Usar teorema binomial \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} para expandir \left(x+5\right)^{3}.
\int x^{4}+15x^{3}+75x^{2}+125x\mathrm{d}x
Usa a propiedade distributiva para multiplicar x por x^{3}+15x^{2}+75x+125.
\int x^{4}\mathrm{d}x+\int 15x^{3}\mathrm{d}x+\int 75x^{2}\mathrm{d}x+\int 125x\mathrm{d}x
Integrar o termo da suma por termo.
\int x^{4}\mathrm{d}x+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Factorizar a constante en cada termo.
\frac{x^{5}}{5}+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{4}\mathrm{d}x por \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplica 15 por \frac{x^{4}}{4}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+125\int x\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica 75 por \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+\frac{125x^{2}}{2}
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica 125 por \frac{x^{2}}{2}.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}
Simplifica.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}+С
Se F\left(x\right) é a primitiva de f\left(x\right), entón o conxunto de todas as primitivas de f\left(x\right) ven dado por F\left(x\right)+C. Entón, engade a constante de integración C\in \mathrm{R} ao resultado.