Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. γ
Tick mark Image

Problemas similares da busca web

Compartir

\int \int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r\mathrm{d}\theta
Calcula a integral indefinida primeiro.
\int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r\theta
Descubre a integral de \int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r empregando a táboa de integrais comúns regra \int a\mathrm{d}\theta =a\theta .
\frac{\left(2\sqrt{5}+\ln(2+\sqrt{5})\right)\gamma \theta }{4}
Simplifica.
\frac{1}{4}\left(2\times 5^{\frac{1}{2}}+\ln(2+5^{\frac{1}{2}})\right)\gamma \times 2\pi -\frac{1}{4}\left(2\times 5^{\frac{1}{2}}+\ln(2+5^{\frac{1}{2}})\right)\gamma \times 0
A integral definida é a primitiva da expresión calculada no límite superior de integración menos a primitiva calculada no límite inferior de integración.
\frac{\left(2\sqrt{5}+\ln(2+\sqrt{5})\right)\gamma \pi }{2}
Simplifica.