Saltar ao contido principal
Calcular
Tick mark Image

Problemas similares da busca web

Compartir

\int \frac{x^{2}}{2}-x^{4}\mathrm{d}x
Calcula a integral indefinida primeiro.
\int \frac{x^{2}}{2}\mathrm{d}x+\int -x^{4}\mathrm{d}x
Integrar o termo da suma por termo.
\frac{\int x^{2}\mathrm{d}x}{2}-\int x^{4}\mathrm{d}x
Factorizar a constante en cada termo.
\frac{x^{3}}{6}-\int x^{4}\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica \frac{1}{2} por \frac{x^{3}}{3}.
\frac{x^{3}}{6}-\frac{x^{5}}{5}
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{4}\mathrm{d}x por \frac{x^{5}}{5}. Multiplica -1 por \frac{x^{5}}{5}.
\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}-\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\left(\frac{0^{3}}{6}-\frac{0^{5}}{5}\right)
A integral definida é a primitiva da expresión calculada no límite superior de integración menos a primitiva calculada no límite inferior de integración.
\frac{\sqrt{2}}{60}
Simplifica.