Calcular
4x^{3}+81x^{2}+623x+С
Diferenciar w.r.t. x
12x^{2}+162x+623
Compartir
Copiado a portapapeis
\int 12x^{2}\mathrm{d}x+\int 162x\mathrm{d}x+\int 623\mathrm{d}x
Integrar o termo da suma por termo.
12\int x^{2}\mathrm{d}x+162\int x\mathrm{d}x+\int 623\mathrm{d}x
Factorizar a constante en cada termo.
4x^{3}+162\int x\mathrm{d}x+\int 623\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica 12 por \frac{x^{3}}{3}.
4x^{3}+81x^{2}+\int 623\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica 162 por \frac{x^{2}}{2}.
4x^{3}+81x^{2}+623x
Descubre a integral de 623 empregando a táboa de integrais comúns regra \int a\mathrm{d}x=ax.
4x^{3}+81x^{2}+623x+С
Se F\left(x\right) é a primitiva de f\left(x\right), entón o conxunto de todas as primitivas de f\left(x\right) ven dado por F\left(x\right)+C. Entón, engade a constante de integración C\in \mathrm{R} ao resultado.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}