Calcular
\frac{x^{4}}{2}+64x+С
Diferenciar w.r.t. x
2\left(x^{3}+32\right)
Compartir
Copiado a portapapeis
\int x^{3}-3x^{2}+3x-1+\left(x-1\right)^{2}-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Usar teorema binomial \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} para expandir \left(x-1\right)^{3}.
\int x^{3}-3x^{2}+3x-1+x^{2}-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Usar teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-1\right)^{2}.
\int x^{3}-2x^{2}+3x-1-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combina -3x^{2} e x^{2} para obter -2x^{2}.
\int x^{3}-2x^{2}+x-1+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combina 3x e -2x para obter x.
\int x^{3}-2x^{2}+x-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Suma -1 e 1 para obter 0.
\int x^{3}-2x^{2}+x-x+\left(4x-x^{2}\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Usa a propiedade distributiva para multiplicar x por 4-x.
\int x^{3}-2x^{2}+x-x+16x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Usa a propiedade distributiva para multiplicar 4x-x^{2} por 4+x e combina os termos semellantes.
\int x^{3}-2x^{2}+17x-x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combina x e 16x para obter 17x.
\int -2x^{2}+17x-x+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combina x^{3} e -x^{3} para obter 0.
\int -2x^{2}+17x-x+x^{4}+2x^{3}-15x^{2}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Eleva 8-x-x^{2} ao cadrado.
\int -17x^{2}+17x-x+x^{4}+2x^{3}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combina -2x^{2} e -15x^{2} para obter -17x^{2}.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
Combina 17x e -16x para obter x.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+17x^{2}-x^{4}\mathrm{d}x
Usa a propiedade distributiva para multiplicar x^{2} por 17-x^{2}.
\int x-x+x^{4}+2x^{3}+64-x^{4}\mathrm{d}x
Combina -17x^{2} e 17x^{2} para obter 0.
\int x-x+2x^{3}+64\mathrm{d}x
Combina x^{4} e -x^{4} para obter 0.
\int 2x^{3}+64\mathrm{d}x
Combina x e -x para obter 0.
\int 2x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Integrar o termo da suma por termo.
2\int x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Factorizar a constante en cada termo.
\frac{x^{4}}{2}+\int 64\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplica 2 por \frac{x^{4}}{4}.
\frac{x^{4}}{2}+64x
Descubre a integral de 64 empregando a táboa de integrais comúns regra \int a\mathrm{d}x=ax.
64x+\frac{x^{4}}{2}+С
Se F\left(x\right) é a primitiva de f\left(x\right), entón o conxunto de todas as primitivas de f\left(x\right) ven dado por F\left(x\right)+C. Entón, engade a constante de integración C\in \mathrm{R} ao resultado.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}