Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares da busca web

Compartir

\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Integrar o termo da suma por termo.
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x\mathrm{d}x por \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
Reescribe \sqrt[3]{x} como x^{\frac{1}{3}}. Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{\frac{1}{3}}\mathrm{d}x por \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Simplifica.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int \frac{1}{x^{2}}\mathrm{d}x por -\frac{1}{x}.
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}+С
Se F\left(x\right) é a primitiva de f\left(x\right), entón o conxunto de todas as primitivas de f\left(x\right) ven dado por F\left(x\right)+C. Entón, engade a constante de integración C\in \mathrm{R} ao resultado.