Saltar ao contido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares da busca web

Compartir

\int 2x^{5}\mathrm{d}x+\int \frac{3}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Integrar o termo da suma por termo.
2\int x^{5}\mathrm{d}x+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Factorizar a constante en cada termo.
\frac{x^{6}}{3}+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int x^{5}\mathrm{d}x por \frac{x^{6}}{6}. Multiplica 2 por \frac{x^{6}}{6}.
\frac{x^{6}}{3}+3\ln(|x|)+\int \frac{1}{x^{9}}\mathrm{d}x
Utilizar \int \frac{1}{x}\mathrm{d}x=\ln(|x|) da táboa de integrais comúns para obter o resultado.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}
Posto que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} por k\neq -1, substituír \int \frac{1}{x^{9}}\mathrm{d}x por -\frac{1}{8x^{8}}.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}+С
Se F\left(x\right) é a primitiva de f\left(x\right), entón o conxunto de todas as primitivas de f\left(x\right) ven dado por F\left(x\right)+C. Entón, engade a constante de integración C\in \mathrm{R} ao resultado.