Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares da busca web

Compartir

\frac{x\times 10^{-13}\times 1.67\times \frac{4}{3}\times 3.1415\times \left(6.96\times 10^{8}\right)^{3}}{1.2\times 10^{-23}}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma 14 e -27 para obter -13.
\frac{\frac{4}{3}\times 1.67\times 3.1415\times 10^{10}\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Para dividir potencias da mesma base, resta o expoñente do denominador do expoñente do numerador.
\frac{\frac{167}{75}\times 3.1415\times 10^{10}\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Multiplica \frac{4}{3} e 1.67 para obter \frac{167}{75}.
\frac{\frac{1049261}{150000}\times 10^{10}\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Multiplica \frac{167}{75} e 3.1415 para obter \frac{1049261}{150000}.
\frac{\frac{1049261}{150000}\times 10000000000\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Calcula 10 á potencia de 10 e obtén 10000000000.
\frac{\frac{209852200000}{3}\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Multiplica \frac{1049261}{150000} e 10000000000 para obter \frac{209852200000}{3}.
\frac{\frac{209852200000}{3}\times \left(6.96\times 100000000\right)^{3}x}{1.2}
Calcula 10 á potencia de 8 e obtén 100000000.
\frac{\frac{209852200000}{3}\times 696000000^{3}x}{1.2}
Multiplica 6.96 e 100000000 para obter 696000000.
\frac{\frac{209852200000}{3}\times 337153536000000000000000000x}{1.2}
Calcula 696000000 á potencia de 3 e obtén 337153536000000000000000000.
\frac{23584137089126400000000000000000000000x}{1.2}
Multiplica \frac{209852200000}{3} e 337153536000000000000000000 para obter 23584137089126400000000000000000000000.
19653447574272000000000000000000000000x
Divide 23584137089126400000000000000000000000x entre 1.2 para obter 19653447574272000000000000000000000000x.
\frac{x\times 10^{-13}\times 1.67\times \frac{4}{3}\times 3.1415\times \left(6.96\times 10^{8}\right)^{3}}{1.2\times 10^{-23}}
Para multiplicar potencias da mesma base, suma os seus expoñentes. Suma 14 e -27 para obter -13.
\frac{\frac{4}{3}\times 1.67\times 3.1415\times 10^{10}\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Para dividir potencias da mesma base, resta o expoñente do denominador do expoñente do numerador.
\frac{\frac{167}{75}\times 3.1415\times 10^{10}\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Multiplica \frac{4}{3} e 1.67 para obter \frac{167}{75}.
\frac{\frac{1049261}{150000}\times 10^{10}\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Multiplica \frac{167}{75} e 3.1415 para obter \frac{1049261}{150000}.
\frac{\frac{1049261}{150000}\times 10000000000\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Calcula 10 á potencia de 10 e obtén 10000000000.
\frac{\frac{209852200000}{3}\times \left(6.96\times 10^{8}\right)^{3}x}{1.2}
Multiplica \frac{1049261}{150000} e 10000000000 para obter \frac{209852200000}{3}.
\frac{\frac{209852200000}{3}\times \left(6.96\times 100000000\right)^{3}x}{1.2}
Calcula 10 á potencia de 8 e obtén 100000000.
\frac{\frac{209852200000}{3}\times 696000000^{3}x}{1.2}
Multiplica 6.96 e 100000000 para obter 696000000.
\frac{\frac{209852200000}{3}\times 337153536000000000000000000x}{1.2}
Calcula 696000000 á potencia de 3 e obtén 337153536000000000000000000.
\frac{23584137089126400000000000000000000000x}{1.2}
Multiplica \frac{209852200000}{3} e 337153536000000000000000000 para obter 23584137089126400000000000000000000000.
19653447574272000000000000000000000000x
Divide 23584137089126400000000000000000000000x entre 1.2 para obter 19653447574272000000000000000000000000x.