Calcular
\frac{5\left(a^{3}+6a^{2}+7a+7b\right)}{a\left(a+3\right)\left(a+6\right)}
Expandir
\frac{5\left(a^{3}+6a^{2}+7a+7b\right)}{\left(a+3\right)\left(a^{2}+6a\right)}
Compartir
Copiado a portapapeis
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{\left(a+3\right)\left(a^{2}+6a\right)}
Multiplica \frac{a+b}{a+3} por \frac{35}{a^{2}+6a} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Factoriza \left(a+3\right)\left(a^{2}+6a\right).
\frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de a+3 e a\left(a+3\right)\left(a+6\right) é a\left(a+3\right)\left(a+6\right). Multiplica \frac{5a}{a+3} por \frac{a\left(a+6\right)}{a\left(a+6\right)}.
\frac{5aa\left(a+6\right)+\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Dado que \frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)} e \frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{5a^{3}+30a^{2}+35a+35b}{a\left(a+3\right)\left(a+6\right)}
Fai as multiplicacións en 5aa\left(a+6\right)+\left(a+b\right)\times 35.
\frac{5a^{3}+30a^{2}+35a+35b}{a^{3}+9a^{2}+18a}
Expande a\left(a+3\right)\left(a+6\right).
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{\left(a+3\right)\left(a^{2}+6a\right)}
Multiplica \frac{a+b}{a+3} por \frac{35}{a^{2}+6a} mediante a multiplicación do numerador polo numerador e do denominador polo denominador.
\frac{5a}{a+3}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Factoriza \left(a+3\right)\left(a^{2}+6a\right).
\frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)}+\frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de a+3 e a\left(a+3\right)\left(a+6\right) é a\left(a+3\right)\left(a+6\right). Multiplica \frac{5a}{a+3} por \frac{a\left(a+6\right)}{a\left(a+6\right)}.
\frac{5aa\left(a+6\right)+\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)}
Dado que \frac{5aa\left(a+6\right)}{a\left(a+3\right)\left(a+6\right)} e \frac{\left(a+b\right)\times 35}{a\left(a+3\right)\left(a+6\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{5a^{3}+30a^{2}+35a+35b}{a\left(a+3\right)\left(a+6\right)}
Fai as multiplicacións en 5aa\left(a+6\right)+\left(a+b\right)\times 35.
\frac{5a^{3}+30a^{2}+35a+35b}{a^{3}+9a^{2}+18a}
Expande a\left(a+3\right)\left(a+6\right).
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}