Saltar ao contido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Problemas similares da busca web

Compartir

\frac{24}{4!\left(4-0\right)!}\times \left(\frac{625}{1296}\right)^{0}\left(1-\frac{625}{1296}\right)^{4-0}
O factor de 4 é 24.
\frac{24}{24\left(4-0\right)!}\times \left(\frac{625}{1296}\right)^{0}\left(1-\frac{625}{1296}\right)^{4-0}
O factor de 4 é 24.
\frac{24}{24\times 4!}\times \left(\frac{625}{1296}\right)^{0}\left(1-\frac{625}{1296}\right)^{4-0}
Resta 0 de 4 para obter 4.
\frac{24}{24\times 24}\times \left(\frac{625}{1296}\right)^{0}\left(1-\frac{625}{1296}\right)^{4-0}
O factor de 4 é 24.
\frac{24}{576}\times \left(\frac{625}{1296}\right)^{0}\left(1-\frac{625}{1296}\right)^{4-0}
Multiplica 24 e 24 para obter 576.
\frac{1}{24}\times \left(\frac{625}{1296}\right)^{0}\left(1-\frac{625}{1296}\right)^{4-0}
Reduce a fracción \frac{24}{576} a termos máis baixos extraendo e cancelando 24.
\frac{1}{24}\times 1\left(1-\frac{625}{1296}\right)^{4-0}
Calcula \frac{625}{1296} á potencia de 0 e obtén 1.
\frac{1}{24}\left(1-\frac{625}{1296}\right)^{4-0}
Multiplica \frac{1}{24} e 1 para obter \frac{1}{24}.
\frac{1}{24}\times \left(\frac{671}{1296}\right)^{4-0}
Resta \frac{625}{1296} de 1 para obter \frac{671}{1296}.
\frac{1}{24}\times \left(\frac{671}{1296}\right)^{4}
Resta 0 de 4 para obter 4.
\frac{1}{24}\times \frac{202716958081}{2821109907456}
Calcula \frac{671}{1296} á potencia de 4 e obtén \frac{202716958081}{2821109907456}.
\frac{202716958081}{67706637778944}
Multiplica \frac{1}{24} e \frac{202716958081}{2821109907456} para obter \frac{202716958081}{67706637778944}.