Saltar ao contido principal
Calcular
Tick mark Image
Expandir
Tick mark Image

Problemas similares da busca web

Compartir

\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}-\frac{2}{-4}
Resta 6 de 2 para obter -4.
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}-\left(-\frac{1}{2}\right)
Reduce a fracción \frac{2}{-4} a termos máis baixos extraendo e cancelando 2.
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}+\frac{1}{2}
O contrario de -\frac{1}{2} é \frac{1}{2}.
\frac{3}{3+b}-\frac{12-b}{\left(b-3\right)\left(b+2\right)}+\frac{1}{2}
Factoriza b^{2}-b-6.
\frac{3\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}-\frac{\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de 3+b e \left(b-3\right)\left(b+2\right) é \left(b-3\right)\left(b+2\right)\left(b+3\right). Multiplica \frac{3}{3+b} por \frac{\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)}. Multiplica \frac{12-b}{\left(b-3\right)\left(b+2\right)} por \frac{b+3}{b+3}.
\frac{3\left(b-3\right)\left(b+2\right)-\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Dado que \frac{3\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} e \frac{\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{3b^{2}+6b-9b-18-12b-36+b^{2}+3b}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Fai as multiplicacións en 3\left(b-3\right)\left(b+2\right)-\left(12-b\right)\left(b+3\right).
\frac{4b^{2}-12b-54}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Combina como termos en 3b^{2}+6b-9b-18-12b-36+b^{2}+3b.
\frac{2\left(4b^{2}-12b-54\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(b-3\right)\left(b+2\right)\left(b+3\right) e 2 é 2\left(b-3\right)\left(b+2\right)\left(b+3\right). Multiplica \frac{4b^{2}-12b-54}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} por \frac{2}{2}. Multiplica \frac{1}{2} por \frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}.
\frac{2\left(4b^{2}-12b-54\right)+\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Dado que \frac{2\left(4b^{2}-12b-54\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)} e \frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{8b^{2}-24b-108+b^{3}+5b^{2}+6b-3b^{2}-15b-18}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Fai as multiplicacións en 2\left(4b^{2}-12b-54\right)+\left(b-3\right)\left(b+2\right)\left(b+3\right).
\frac{10b^{2}-33b-126+b^{3}}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Combina como termos en 8b^{2}-24b-108+b^{3}+5b^{2}+6b-3b^{2}-15b-18.
\frac{10b^{2}-33b-126+b^{3}}{2b^{3}+4b^{2}-18b-36}
Expande 2\left(b-3\right)\left(b+2\right)\left(b+3\right).
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}-\frac{2}{-4}
Resta 6 de 2 para obter -4.
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}-\left(-\frac{1}{2}\right)
Reduce a fracción \frac{2}{-4} a termos máis baixos extraendo e cancelando 2.
\frac{3}{3+b}-\frac{12-b}{b^{2}-b-6}+\frac{1}{2}
O contrario de -\frac{1}{2} é \frac{1}{2}.
\frac{3}{3+b}-\frac{12-b}{\left(b-3\right)\left(b+2\right)}+\frac{1}{2}
Factoriza b^{2}-b-6.
\frac{3\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}-\frac{\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de 3+b e \left(b-3\right)\left(b+2\right) é \left(b-3\right)\left(b+2\right)\left(b+3\right). Multiplica \frac{3}{3+b} por \frac{\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)}. Multiplica \frac{12-b}{\left(b-3\right)\left(b+2\right)} por \frac{b+3}{b+3}.
\frac{3\left(b-3\right)\left(b+2\right)-\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Dado que \frac{3\left(b-3\right)\left(b+2\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} e \frac{\left(12-b\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} teñen o mesmo denominador, réstaos mediante a resta dos seus numeradores.
\frac{3b^{2}+6b-9b-18-12b-36+b^{2}+3b}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Fai as multiplicacións en 3\left(b-3\right)\left(b+2\right)-\left(12-b\right)\left(b+3\right).
\frac{4b^{2}-12b-54}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{1}{2}
Combina como termos en 3b^{2}+6b-9b-18-12b-36+b^{2}+3b.
\frac{2\left(4b^{2}-12b-54\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}+\frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Para sumar ou restar expresións, expándeas para facer que os seus denominadores sexan iguais. O mínimo común múltiplo de \left(b-3\right)\left(b+2\right)\left(b+3\right) e 2 é 2\left(b-3\right)\left(b+2\right)\left(b+3\right). Multiplica \frac{4b^{2}-12b-54}{\left(b-3\right)\left(b+2\right)\left(b+3\right)} por \frac{2}{2}. Multiplica \frac{1}{2} por \frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{\left(b-3\right)\left(b+2\right)\left(b+3\right)}.
\frac{2\left(4b^{2}-12b-54\right)+\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Dado que \frac{2\left(4b^{2}-12b-54\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)} e \frac{\left(b-3\right)\left(b+2\right)\left(b+3\right)}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)} teñen o mesmo denominador, súmaos mediante a suma dos seus numeradores.
\frac{8b^{2}-24b-108+b^{3}+5b^{2}+6b-3b^{2}-15b-18}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Fai as multiplicacións en 2\left(4b^{2}-12b-54\right)+\left(b-3\right)\left(b+2\right)\left(b+3\right).
\frac{10b^{2}-33b-126+b^{3}}{2\left(b-3\right)\left(b+2\right)\left(b+3\right)}
Combina como termos en 8b^{2}-24b-108+b^{3}+5b^{2}+6b-3b^{2}-15b-18.
\frac{10b^{2}-33b-126+b^{3}}{2b^{3}+4b^{2}-18b-36}
Expande 2\left(b-3\right)\left(b+2\right)\left(b+3\right).