Calcular
\frac{1285000\sqrt{2}+1436000}{36481}\approx 89.176953144
Compartir
Copiado a portapapeis
\frac{2\left(0.8+\sqrt{2}\right)}{0.04\left(\sqrt{2}\right)^{2}-0.024\sqrt{2}+0.0036}
Usar teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(0.2\sqrt{2}-0.06\right)^{2}.
\frac{2\left(0.8+\sqrt{2}\right)}{0.04\times 2-0.024\sqrt{2}+0.0036}
O cadrado de \sqrt{2} é 2.
\frac{2\left(0.8+\sqrt{2}\right)}{0.08-0.024\sqrt{2}+0.0036}
Multiplica 0.04 e 2 para obter 0.08.
\frac{2\left(0.8+\sqrt{2}\right)}{0.0836-0.024\sqrt{2}}
Suma 0.08 e 0.0036 para obter 0.0836.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{\left(0.0836-0.024\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}
Racionaliza o denominador de \frac{2\left(0.8+\sqrt{2}\right)}{0.0836-0.024\sqrt{2}} mediante a multiplicación do numerador e o denominador por 0.0836+0.024\sqrt{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.0836^{2}-\left(-0.024\sqrt{2}\right)^{2}}
Considera \left(0.0836-0.024\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right). A multiplicación pódese transformar na diferencia de cadrados mediante a regra: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-\left(-0.024\sqrt{2}\right)^{2}}
Calcula 0.0836 á potencia de 2 e obtén 0.00698896.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-\left(-0.024\right)^{2}\left(\sqrt{2}\right)^{2}}
Expande \left(-0.024\sqrt{2}\right)^{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.000576\left(\sqrt{2}\right)^{2}}
Calcula -0.024 á potencia de 2 e obtén 0.000576.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.000576\times 2}
O cadrado de \sqrt{2} é 2.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.001152}
Multiplica 0.000576 e 2 para obter 0.001152.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00583696}
Resta 0.001152 de 0.00698896 para obter 0.00583696.
\frac{12500000}{36481}\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)
Divide 2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right) entre 0.00583696 para obter \frac{12500000}{36481}\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right).
\left(\frac{10000000}{36481}+\frac{12500000}{36481}\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)
Usa a propiedade distributiva para multiplicar \frac{12500000}{36481} por 0.8+\sqrt{2}.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{300000}{36481}\left(\sqrt{2}\right)^{2}
Usa a propiedade distributiva para multiplicar \frac{10000000}{36481}+\frac{12500000}{36481}\sqrt{2} por 0.0836+0.024\sqrt{2} e combina os termos semellantes.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{300000}{36481}\times 2
O cadrado de \sqrt{2} é 2.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{600000}{36481}
Multiplica \frac{300000}{36481} e 2 para obter \frac{600000}{36481}.
\frac{1436000}{36481}+\frac{1285000}{36481}\sqrt{2}
Suma \frac{836000}{36481} e \frac{600000}{36481} para obter \frac{1436000}{36481}.
Exemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}